
MTH 333 Lecture Notes

Zachary Winkeler

Fall 2023

Contents

1 Categories 4
1.1 Categories in general . 5

1.1.1 Motivation: linear algebra . 5
1.1.2 Categories in general . 6

1.2 Examples of categories . 7
1.3 Functors . 10

1.3.1 Review . 10
1.3.2 Functors . 10
1.3.3 Posets . 12

1.4 Constructions . 14
1.4.1 Opposite Day . 14
1.4.2 Products and Disjoint Unions . 15
1.4.3 Slices and Coslices . 15

1.5 Isos, Monos, and Epis . 16
1.5.1 Isomorphisms . 16
1.5.2 Monos and Epis . 17

2 Limits 18
2.1 Universal properties . 19

2.1.1 Initial, Terminals, and Zeroes . 19
2.1.2 Intro to Universal Properties . 19

2.2 Products . 21
2.2.1 Intro to Universal Properties . 21
2.2.2 Products in general . 21

2.3 Coproducts . 24
2.3.1 Duality . 24
2.3.2 Coproducts . 25
2.3.3 Lattices . 26
2.3.4 A First Look at Monoidal Categories 27

2.4 Elements . 28
2.5 Subobjects . 29

2.5.1 Products and Disjoint Unions . 29
2.5.2 Slices and Coslices . 29
2.5.3 Subcategories . 29
2.5.4 Subobjects in general . 31

1

CONTENTS

2.6 Pullbacks . 32
2.6.1 Motivation: Databases . 32
2.6.2 Pullbacks in general . 33
2.6.3 Posets . 34
2.6.4 Sets . 34

2.7 Limits . 35
2.7.1 Diagrams and Cones . 35
2.7.2 Limits in general . 36
2.7.3 Example: Power Series . 37
2.7.4 Limits in Set . 37

2.8 Colimits . 38
2.8.1 Pushouts . 38
2.8.2 Colimits in general . 39
2.8.3 Example: Infinite Sequences . 40
2.8.4 Colimits . 40
2.8.5 Limits . 40
2.8.6 Another Example . 40

3 Functors 41
3.1 Categories, again . 42

3.1.1 Limits and Colimits in Set . 42
3.1.2 Small and Large Categories . 43

3.2 Representable Functors . 44
3.2.1 Limit Preservation . 45

3.3 Natural transformations . 46
3.3.1 Natural transformations in general 46
3.3.2 Example: idSet → Mor({∗},−) . 46
3.3.3 Example: idSet → P(−) . 47
3.3.4 Example: Mor(−, {0, 1})→ P(−) . 47
3.3.5 Example: X × Y → Y ×X . 47

3.4 Natural isomorphisms . 48
3.4.1 Properties of natural transformations 48
3.4.2 Limit preservation . 49

3.5 Equivalence of categories . 50
3.5.1 Example: Partial functions . 51

3.6 Equivalence, continued . 52
3.6.1 Skeletons . 52
3.6.2 Preorders . 52
3.6.3 Groupoids . 53

3.7 Adjoints . 54
3.7.1 Free Vector Spaces . 54
3.7.2 Currying . 56
3.7.3 Free-forgetful Adjunctions . 56
3.7.4 Limit Preservation . 56

3.8 Cartesian closed categories . 57

2

CONTENTS

3.8.1 Adjoints . 57
3.9 Cartesian closed categories in general . 57

3.9.1 Propositions . 58
3.9.2 Posets . 58
3.9.3 Closed categories . 58

3.10 Monoidal categories . 59
3.10.1 Review . 59
3.10.2 Vector Spaces . 59
3.10.3 Monoidal Categories in general . 60
3.10.4 Monoids in Monoidal Categories . 61

3.11 The Yoneda embedding . 63
3.11.1 Presheaves . 63
3.11.2 The Yoneda embedding in general . 64

3

Chapter 1

Categories

4

1.1. CATEGORIES IN GENERAL

1.1 Categories in general

1.1.1 Motivation: linear algebra

Recall that a group is a set G with a binary operation · which is

• associative, e.g. for all a, b, c ∈ G,

(a · b) · c = a · (b · c) ,

• unital, e.g. there exists an element 1 ∈ G such that for all a ∈ G,

1 · a = a · 1 = a,

and

• invertible, e.g. for all a ∈ G there exists an element a−1 ∈ G such that

a · a−1 = a−1 · a = 1 .

Some examples of groups include

• (Z,+),

• (Z/nZ,+),

• ((Z/nZ)×, ·), and

• the symmetric group Sn.

One interesting place to find groups is linear algebra. For example, the set of all n × n
real matrices is denoted Mn(R). While matrix multiplication is a unital associative binary
operation on Mn(R), it is not a group structure because not every matrix has an inverse.
On the other hand, the set of n × n invertible real matrices forms a group under matrix
multiplication called the general linear group, denoted GLn(R).

Groups are one example of an algebraic structure, which is actually a bit of a vague term
for a set equipped with some operations. While Mn(R) is not a group under multiplication, it
does form a weaker kind of algebraic structure called a monoid. A monoid is a set equipped
with an associative unital binary operation, i.e. like a group but without requiring inverses.

Some other examples of monoids that are not groups include

• (N,+),

• ((Z/nZ), ·), and

• the set of functions {1, . . . , n} →
{1, . . . , n} under composition.

5

1.1. CATEGORIES IN GENERAL

What can we say about the set M(R) of all real matrices (of all sizes)? While this set
does have a binary operation in matrix multiplication, it is only sometimes defined. For
example, (

1 2
)
·
(
1 2 3
4 5 6

)
=

(
9 12 15

)
,

but (
1 2 3
4 5 6

)
·
(
1 2

)
= ??? .

The issue is that an m×n matrix can only be multiplied by an n×p matrix; in other words,
matrix multiplication defines a partial operation on the set M(R). Therefore, (M(R), ·) is
not a monoid, but our first example of a category.

1.1.2 Categories in general

A category C is

• a collection Obj(C) of objects,

• a collection Hom(A,B) of morphisms for any A,B ∈ Obj(C), and

• an associative, unital operation ◦ : Hom(B,C) × Hom(A,B) → Hom(A,C) for any
A,B,C ∈ Obj(C).

Sometimes we call morphisms arrows, especially if we are trying to draw them. Our example
in Section 1.1.1 involves the category VectR. The objects of VectR are real vector spaces,
and the morphisms Rn → Rm are linear transformations, which we can represent by m× n
matrices. More examples of categories include:

• The category Set has sets as its objects, and if A and B are sets, Hom(A,B) is
the collection of functions A → B. The operation ◦ is defined to be composition of
functions as you might expect.

• The category Grp has groups as its objects, and if G and H are groups, Hom(G,H)
is the collection of group homomorphisms G→ H.

• The category Grph has graphs as its objects, and graph homomorphisms (functions
that send vertices to vertices and preserve the edges) as its morphisms.

• The category Top has topological spaces as its objects, and continuous maps as its
morphisms.

In all of these examples, the objects are sets with extra structure, and the morphisms
are all the functions between those sets that preserve the structure. The word for this type
of category is a concrete category, a term which we will sadly have to wait until later to
rigorously define. For now, the important thing to notice is that sets and functions play a
fundamental role in category theory.

6

1.2. EXAMPLES OF CATEGORIES

1.2 Examples of categories

Our examples above are all concrete categories, since the objects are sets with extra structure,
and the morphisms are functions that preserve that structure. Some categories are not
(obviously) concrete, on the other hand. There are (at least) two different perspectives on
categories that one could adopt:

• Object-oriented : We want to study the objects, and the morphisms between them help
us understand the objects better.

• Morphism-oriented : The morphisms are the actual “elements” of our category, and the
purpose of the objects are to tell us when we can and can’t compose the morphisms.

Our examples above support the first viewpoint rather nicely, but other examples might
make more sense from the second perspective. For instance, any monoid (or group) M is a
category with one object ⋆ and Hom(⋆, ⋆) = M , where ◦ is the monoid multiplication. The
converse is true too; every category with only one object is actually a monoid!

Example. Imagine you have a bunch of square tiles that come in two colors, red and blue,
and you want to arrange these tiles in a line. There are an infinite number of ways to do this;
for example, you could make a line of three red tiles (RRR), a line of six tiles alternating
colors (RBRBRB), etc. We might abbreviate the set of all such tile arrangements as {R,B}∗;
this notation uses the Kleene star, which represents forming the free monoid generated by
the set {R,B}.

7

1.2. EXAMPLES OF CATEGORIES

Exercise 1.2.1. Now imagine that you’re building a one-dimensional puzzle. You have a
bunch of puzzle pieces that come in two colors, red and blue, and each piece may also have
one of four shapes. The eight possible tiles are shown below:

You want to connect the puzzle pieces into strings, such that each piece fits nicely in the
pieces beside it. For example, one string of puzzle pieces might look like this:

(a) The set of strings of puzzle pieces does not form a monoid. Why?

(b) The set of strings of puzzle pieces does, however, form a category. How many objects
does this category have? What are the morphisms?

(c) Draw a picture of your category from part (b). (Since there are infinitely many strings
of puzzle pieces, you probably can’t draw all of it.)

8

1.2. EXAMPLES OF CATEGORIES

Exercise 1.2.2. One way that we might depict binary operations is via multiplication tables.
Each multiplication table below depicts a binary operation on the set {a, b, c}. Empty cells
indicate that the row and column elements cannot be multiplied. For each table, determine
if the operation satisfies the conditions for a group, monoid, and/or category. For each table
that corresponds to a category, figure out how many objects it has and draw a picture of it.

(a)

a b c

a a b c

b b c a

c c a b

(b)

a b c

a a

b b

c c

(c)

a b c

a a b a

b b b b

c c b c

(d)

a b c

a a

b b

c b c

(e)

a b c

a a c

b b

c c c

9

1.3. FUNCTORS

1.3 Functors

1.3.1 Review

Recall that a category C is

• a collection Obj(C) of objects,

• a collection Mor(A,B) of morphisms for any A,B ∈ Obj(C), and

• an associative, unital operation ◦ : Mor(B,C) × Mor(A,B) → Mor(A,C) for any
A,B,C ∈ Obj(C).

Notably, each object X ∈ Obj(C) has an associated identity morphism idX : X → X.
Examples of categories include Set, VectR, Grp, any group G, any monoid M , and the
one-dimensional puzzle piece example from last class.

One important perspective to keep in mind when studying categories is that sometimes
you should think of the morphisms as the actual “elements” of the category, and the objects
simply as obstructions to being able to compose morphisms.

One of the fun parts of category theory is that it draws connections between facts in
seemingly unrelated parts of math.

• Group theory: Every group is isomorphic to a subgroup of a symmetric group.

• Number theory: gcd(a, b) · lcm(a, b) = a · b.

• Propositional logic: (P ∧Q)→ R ⇐⇒ P → (Q→ R).

• Combinatorics: |A ∪B| = |A|+ |B| − |A ∩B|.

• Set theory: (A ∪B)c ∼= Ac ∩Bc.

• Functions: {functions A→ (B → C)} ∼= {functions A×B → C}.

1.3.2 Functors

In keeping with the spirit of studying maps between things, we may want to define maps
between categories themselves! These are known as functors. A functor F : C → D is a
map that sends objects to objects and morphisms to morphisms and respects the structure
of a category i.e.

• if f : X → Y is a morphism in C, then F (f) : F (X)→ F (Y) is a morphism in D,

• F (idX) = idF (X), and

• F (g ◦ f) = F (g) ◦ F (f).

We can visualize the above conditions with a few diagrams:

10

1.3. FUNCTORS

X F (X)

7→

Y F (Y)

f F (f)

X Y F (X) F (Y)

7→

Z F (Z)

f

g◦f
g

F (f)

F (g)◦F (f)
F (g)

X 7→ F (X)idX idF (X)

Functors are everywhere! For example, the determinant of the matrix is a functor det :
VectR → R, because

• we can think of R as a monoid under multiplication, so it is a category.

• det(T) is a real number, so it is a morphism in R.

• det(idRn) = 1.

• det(S ◦ T) = det(S) det(T).

One can also check that

• If G and H are groups, then a functor F : G→ H is just a group homomorphism.

• If M and N are monoids, then a functor F :M → N is a monoid homomorphism.

As another example, the power set operation defines a functor P : Set → Set. On a
morphism f : X → Y , we can define P(f) to be the map sending U ⊆ X to P(U) ⊆ P(Y).
Then we can check that

• P(f) : P(X)→ P(Y) is indeed a function between sets,

• P(idX) = idP(X), and

• P(g ◦ f) = P(g) ◦ P(f).

A forgetful functor is a common type of functor that “forgets” some structure on our
objects. For example, the forgetful functor Grp→ Set sends any group G to its underlying
set. We have a similar forgetful functor from VectR to Set.

One consequence of the definition of a functor F is that it induces maps Mor(X, Y) →
Mor(F (X), F (Y)) for all objects X and Y . We say that the functor F is faithful if all
of these induced maps are injective, and full if all of these induced maps are surjective.
Forgetful functors are often faithful, but rarely full, since there may be other maps between
objects that don’t preserve their structure.

11

1.3. FUNCTORS

1.3.3 Posets

A partially-ordered set (P,≤) is a set P equipped with a binary relation ≤ that is

• reflexive, i.e. p ≤ p,

• antisymmetric, i.e. p ≤ q and q ≤ p implies p = q, and

• transitive, i.e. p ≤ q and q ≤ r implies p ≤ r.

Partially-ordered sets generalize totally-ordered sets, which contain the extra condition
that one of p ≤ q or q ≤ p must always be true. Examples include

• any total order, e.g. N,Z,Q,R.

• R2 with the order (x, y) ≤ (r, s) ⇐⇒ x ≤ r ∧ y ≤ s.

• N with the divisibility order, i.e. a ≤ b ⇐⇒ a | b.

• P(X) for any set X, with U ≤ V ⇐⇒ U ⊆ V .

Any partially-ordered set (P,≤) can be made into a category P : the objects of P are the
elements of P , and there is a unique morphism x → y exactly when p ≤ q; if p ̸≤ q, there
are no morphisms p → q. We can visualize partial orders as directed graphs the same way
that we would any other category; partial orders are especially nice since each set Mor(X, Y)
either has zero or one elements, so there is no ambiguity about composition.

When drawing pictures of partial orders, we often omit the relations implied by reflexivity
and transitivity (identity arrows and compositions of arrows), since they can be inferred
from context and add visual clutter. A picture without these extra arrows is called a Hasse
diagram of the partial order.

12

1.3. FUNCTORS

Exercise 1.3.1. Let F : (N, |) → P(N) be the functor that maps a natural number to its
set of divisors.

(a) Prove that F is in fact a functor.

(b) Is F full?

(c) Is F faithful?

(d) Is F surjective on objects?

13

1.4. CONSTRUCTIONS

1.4 Constructions

1.4.1 Opposite Day

Let G be a non-commutative group, for example S3. We can multiply elements of G to get
other elements, and sometimes the order of multiplication might matter, e.g.

(13) · (12) = (123)

(12) · (13) = (132) .

Given any group G, we can define another group Gop with all the same elements as G, but
where multiplication is reversed, i.e. if ab = c in G, then ba = c in Gop. We call Gop the
opposite group of G. Denoting the multiplication in Gop by ·′, the above facts in Sop

3

become

(13) ·′ (12) = (132)

(12) ·′ (13) = (123) .

Are S3 and Sop
3 different groups?

No! We can construct an isomorphism φ : S3 → Sop
3 by swapping (123) and

(132) and leaving the other four elements unchanged.

Also there is only one non-commutative group of order 6.

What can we say about G and Gop in general?

They are always isomorphic via the map ϕ : G→ Gop sending g 7→ g−1.

In general, given any category C, the opposite category Cop has an object X ′ for every
object X of C, and a morphism f ′ : Y ′ → X ′ for every morphism f : X → Y of C. The
composition operation ◦′ in Cop is defined such that if f ◦ g = h in C, then g′ ◦′ f ′ = h′ in
Cop. Note that not only is the order of composition swapped, but each morphism also has
swapped sources and targets!

Remark 1.4.1. If f : X → Y is a function, we often call X the domain and Y the codomain of
f . When talking about categories, sometimes we use the words source and target instead.
These are mostly interchangeable; perhaps source and target feel less Set-focused.

One reason why we might define opposite categories is to talk about functors which
reverse the order of morphisms. More specifically, one might define a contravariant functor
F : C → D to be a mapping of objects to objects and morphisms f : X → Y to morphisms
F (f) : F (Y) → F (X) that respects but reverses composition: F (g ◦ f) = F (f) ◦ F (g).
However, we can already express this construction using ordinary (covariant) functors and
the opposite category. A contravariant functor F : C → D is just a functor Cop → D, or
equivalently, a functor C → Dop.

14

1.4. CONSTRUCTIONS

1.4.2 Products and Disjoint Unions

Given two categories C and D, we can form their product category C ×D. The objects of
C × D are pairs (C,D) ∈ Obj(C) × Obj(D), and the morphisms are pairs (f, g) : (C,D) →
(X, Y) of morphisms f : C → X and g : D → Y . Composition is defined component-wise,
i.e. (f, g) ◦ (h, i) = (f ◦ h, g ◦ i). If C = G and D = H are groups, then the product category
coincides with the direct product G×H.

We can also form the disjoint union category C ⊔D. The objects are Obj(C)⊔Obj(D)
and the morphisms are inherited from each category individually. Visually, this corresponds
to drawing a picture of both categories side-by-side.

Remark 1.4.2. The disjoint union X⊔Y of two sets X and Y represents taking their union
while ignoring whether or not any elements of X are “the same” as elements of Y . One way
to formally define this is as

X ⊔ Y = (X × {1}) ∪ (Y × {2})

i.e. the elements of X ⊔ Y are pairs (x, 1) for x ∈ X or (y, 2) for y ∈ Y . This definition
essentially forces elements of X and Y to be distinct.

1.4.3 Slices and Coslices

Let C be a category, and let T be an object in C. The slice category C/T (read “C over
T”) has an object for every morphism whose target is T . If f : X → T and g : Y → T are
two objects of C/T , a morphism φ : f → g is a map h : X → Y making the triangle below
commute, i.e. g ◦ h = f .

X Y

φ
=⇒

T

h

f g

Analogously, the coslice category S/C (read “C under S”) has an object for every
morphism whose source is S. If f : S → X and g : S → Y are two objects of S/C, a
morphism ϕ : f → g is a map h : X → Y making the triangle below commute, i.e. h ◦ f = g.

S

φ
=⇒

X Y

f g

h

15

1.5. ISOS, MONOS, AND EPIS

1.5 Isos, Monos, and Epis

1.5.1 Isomorphisms

In any category C, an isomorphism f : X → Y is a morphism with a two-sided inverse, i.e.
a morphism g : Y → X such that

g ◦ f = idX and f ◦ g = idY .

We often denote a two-sided inverse g by f−1. Intuitively, isomorphisms connect objects
that are “basically the same”. For example,

• the isomorphisms in Set are the bijections,

• the isomorphisms in Grp are the group isomorphisms, and

• the isomorphisms in VectR are represented by invertible matrices.

If we consider a group G as a category, then every arrow is an isomorphism! If we consider
a monoid M as a category, then the isomorphisms are exactly the invertible elements.

It may be tempting to think of isomorphisms and bijections in concrete categories as
equivalent notions; however, this is only true in one direction! Isomorphisms are always
bijections, but bijections are not always isomorphisms.

To illustrate this notion, let’s think about posets. One natural notion of morphism
between posets is order homomorphism. An order homomorphism f : P → Q is a
function P → Q that respects the partial order

p ≤ q =⇒ f(p) ≤ f(q) .

In order for f to be an isomorphism of posets, f−1 needs to satisfy the same condition:

f(p) ≤ f(q) =⇒ f−1(f(p)) ≤ f−1(f(q)) .

Therefore, if f : P → Q is an order isomorphism, then p ≤ q ⇐⇒ f(p) ≤ f(q).
Now, consider two very basic posets. The poset P has underlying set {a, b} with only the

required relations a ≤ a and b ≤ b. The poset Q has the same underlying set with only one
additional relation a ≤ b. The identity function on {a, b} induces an order homomorphism
f : P → Q, which respects ≤ and is clearly bijective. However, f is not an isomorphism,
since the inverse function f−1 does not respect ≤: a ≤ b in Q, but a ̸≤ b in P .

b b

f
=⇒

a a

b b

f−1

=⇒

a a

16

1.5. ISOS, MONOS, AND EPIS

1.5.2 Monos and Epis

In our definition of isomorphism, it was important that g : Y → X was a two-sided inverse to
f : X → Y . There are many situations where g◦f = idX or f ◦g = idY are true individually,
but not both at the same time. For example, let f : N → Z be given by f(x) = x and let
g : Z→ N be given by g(y) = |y|. Then (g ◦ f)(x) = |x|, which is the identity on N. On the
other hand, (f ◦ g)(y) = |y|, which is not the identity on Z. To summarize,

g ◦ f = idN, but f ◦ g ̸= idZ .

Therefore, we say that g is a left inverse of f , and f is a right inverse of g. However,
neither of f or g has a two-sided inverse. The set-theoretic terminology here is that f is
injective and g is surjective, but neither is bijective.

There are multiple ways to generalize injective and surjective to morphisms in general
categories, based on the following equivalences.

Lemma 1.5.1. The following are equivalent for a function f : X → Y with X ̸= ∅:

(a) f is injective: f(x1) = f(x2) =⇒ x1 = x2 for all x1, x2 ∈ X.

(b) f is left-cancellative: f ◦ h1 = f ◦ h2 =⇒ h1 = h2 for all functions h1, h2 : W → X.

(c) f has a left inverse: g ◦ f = idX for some g : Y → X.

Lemma 1.5.2. The following are equivalent for a function f : X → Y with X ̸= ∅:

(a) f is surjective: for all y ∈ Y , there exists an x ∈ X such that f(x) = y.

(b) f is right-cancellative: h1 ◦ f = h2 ◦ f =⇒ h1 = h2 for all functions h1, h2 : Y → Z.

(c) f has a right inverse: f ◦ g = idY for some g : Y → X.

We can’t directly generalize (a) in either lemma to categories, since the objects of our
category may not have “elements” in the traditional sense. On the other hand, each (b) and
(c) definition generalizes nicely, since they only refer to properties of morphisms. In fact, it
turns out that (b) and (c) produce distinct generalizations.

Generalizing part (b) of both lemmas, if a map f : X → Y is left-cancellative, i.e.
f ◦h1 = f ◦h2 =⇒ h1 = h2, we call f monic, or a monomorphism. Dually, if f : X → Y
is right-cancellative, i.e. h1 ◦ f = h2 ◦ f , we call g epic, or an epimorphism. These names
are often shortened to simply “monos” or “epis”.

On the other hand, generalizing part (c) of both lemmas gives us the definitions of split
monos and epis. A split monomorphism f : X → Y is a morphism with a left inverse,
i.e. g ◦ f = idX for some g : Y → X. Dually, a split epimorphism f : X → Y has a right
inverse, i.e. f ◦ g = idY for some g : Y → X.

17

Chapter 2

Limits

18

2.1. UNIVERSAL PROPERTIES

2.1 Universal properties

2.1.1 Initial, Terminals, and Zeroes

An initial object ∅ in a category C is an object such that there is exactly one morphism

∅ → X

for every object X. Dually, a terminal object 1 in C is an object such that there is exactly
one morphism

X → 1

for every object X. Here are some examples:

Category Initial object Terminal object

Set {} {⋆}

Grp 0 0

VectR R0 R0

Ring Z 0

Field − −

Fieldp Z/pZ −

Sometimes, an object 0 in a category is both an initial and a terminal object. In this
case, we call it a zero object. On the other hand, sometimes a category may not have any
initial (or terminal) objects.

What we can say is that if an initial (or terminal) object exists, then it is unique up
to unique isomorphism. What this means is that any two initial (or terminal) objects are
isomorphic, and there is only one isomorphism between them! For example, the one-element
set {⋆} is a terminal object in Set, and so is the one-element set {x}. These two sets are
isomorphic, and in fact there is only one isomorphism between them: the map that sends
⋆ 7→ x.

2.1.2 Intro to Universal Properties

The definition of initial and terminal objects is our first example of a universal property.
A universal property is a characterization of an object by the relationship that it has to
every other object in a category.

Example. If A and B are sets, the intersection A ∩B satisfies the universal property that,
for any set C such that C ⊆ A and C ⊆ B, C ⊆ A ∩B.

Example. The free group Fn satisfies the universal property that, for any group G, mor-
phisms Fn → G are in bijection with n-tuples of elements of G.

19

2.1. UNIVERSAL PROPERTIES

Exercise 2.1.1. For each poset (or Hasse diagram representing a poset), identify the initial
objects and/or terminal objects, if they exist.

(a)

d

b c

a

(b)
c d

a b

(c)
b c

a

(d)

f

e

c d

b

a

(e) N with the usual ordering ≤.

(f) Z with the usual ordering ≤.

(g) N with a ≤ b ⇐⇒ a | b.

(h) Z with a ≤ b ⇐⇒ a | b.

Exercise 2.1.2. Do any posets (not just the ones listed here) have zero objects?

The initial object of a poset is called the least element , or bottom , and is

denoted ⊥ . The terminal object of a poset is called the greatest element , or

top , and is denoted ⊤ . A poset with both an initial object and a terminal object

is called a bounded poset .

20

2.2. PRODUCTS

2.2 Products

2.2.1 Intro to Universal Properties

Recall that last class we discussed initial and terminal objects; an initial object ∅ satisfies
the property that there is a unique map ∅ → X for any object X. Dually, a terminal object
1 satisfies the property that there is a unique map X → 1 for any object X. The definition
of initial and terminal objects is our first example of a universal property. A universal
property is a characterization of an object by the relationship that it has to every other
object in a category.

Example. If A and B are sets, the intersection A ∩B satisfies the universal property that,
for any set C such that C ⊆ A and C ⊆ B, C ⊆ A ∩B.

Example. The free group Fn satisfies the universal property that, for any group G, mor-
phisms Fn → G are in bijection with n-tuples of elements of G.

One way that universal properties are used in category theory is to define constructions
that don’t depend on our objects having “elements”, i.e. generalize notions from Set to an
arbitrary category C. For example, let’s think about the product of two sets A× B. Given
A and B, it is easy to define the Cartesian product:

A×B = {(a, b) | a ∈ A and b ∈ B} .

However, how can we define A× B in Set without referencing elements? In other words, is
there a way to define A×B purely in terms of objects and morphisms?

2.2.2 Products in general

Let A and B be two sets, let A × B be their Cartesian product, and let X be some other
set. If we have two functions f : X → A and g : X → B, then we can combine them into
a single function f × g : X → A × B defined to be (f × g)(x) = (f(x), g(x)). Conversely,
given a function h : X → A × B, we can define maps f : X → A and g : X → B to be
f(x) = π1(h(x)) and g(x) = π2(h(x)). Here, π1 and π2 are the projection maps

π1 : A×B → A π1(a, b) = a

π2 : A×B → B π2(a, b) = b .

One can prove that this correspondence is actually a bijection between maps X → A × B
and pairs of maps X → A and X ×B. In other words, specifying a map X → A and a map
X → B is basically the same as specifying a map X → A×B. This is the property that we
will use to generalize the product of sets to other categories!

21

2.2. PRODUCTS

In any category C, the product of two objects A and B, if it exists, is an object A×B
with maps π1 : A×B → A and π2 : A×B → B such that for any two morphisms f : X → A
and g : X → B, there is a unique morphism h : X → A×B with π1 ◦ h = f and π2 ◦ h = g.

A

X A×B

B

h

f

g

π1

π2

Note that the maps π1 and π2 are part of the definition of the product. For some examples
of products,

• the product in Set is the Cartesian product A×B,

• the product in Grp is the product group G×H,

• the product in VectR is the direct sum V ⊕W ,

• the product in Ring is the product ring R× S.
In all of these cases, products exist and they are basically what you would expect them to
be: the underlying set is the Cartesian product, and the extra structure is extended in a
sensible way.

Sometimes, products may not exist; for example, there is no product in Field or Fieldp.
In other cases, products exist but may not look anything like the Cartesian product of sets.
Let’s look at products in posets to see instances of this phenomenon. Given a poset (P,≤),
we can consider it as a category where the objects are the elements of P as usual. Let
a, b ∈ P be two elements.

• The product a× b, if it exists, is some element c with maps c→ a and c→ b.

– We can translate these maps as inequalities c ≤ a and c ≤ b.

• Furthermore, the product c should satisfy the property that given any other x ∈ P
with maps x → a and x → b, there is a unique map x → c that commutes with the
projections.

– We can translate this part as saying that if x ≤ a and x ≤ b, then x ≤ c.

Exercise 2.2.1. Find the products a× b, b× d, d× e, and e× f in the poset shown below.

e f

b c d

a

22

2.2. PRODUCTS

Essentially, in a poset (P,≤), the product of a and b is some element c that is smaller
than (or equal to) a and b, but bigger than (or equal to) any other element x that is also
smaller than (or equal to) a and b. To use a more familiar name, this element c is the
greatest lower bound of a and b.

Exercise 2.2.2. Let U be some set, and consider the poset (P(U),⊆) of subsets of U ordered
by inclusion.

(a) Draw this poset for U = {1, 2}.

(b) What operation does the categorical product correspond to for a general set U?

Exercise 2.2.3. Consider the poset consisting of the two truth values F and T , with the
ordering F ≤ T . What operation does the product correspond to in this category?

23

2.3. COPRODUCTS

2.3 Coproducts

2.3.1 Duality

Last class, we talked about products in a category. The product of two objects A and B, is,
if it exists, an objects A×B such that for any pair of morphisms X → A and X → B, there
exists a unique morphism X → A×B making the diagram below commute.

A

X A×B

B

h

f

g

π1

π2

Let’s look at this diagram in the opposite category. In that case, the product A× B would
correspond to some object (A × B)′ that satisfies a different condition: for every pair of
morphisms f ′ : A′ → X ′ and g′ : B′ → X ′, there exists a unique morphism h′ : (A×B)′ → X ′

such that the “opposite diagram” below commutes.

A′

X ′ (A×B)′

B′

h′

f ′

g′

π′
1

π′
2

This object (A × B)′ is no longer the product of A′ and B′; instead it is their coproduct.
In general, if we define some kind of construction in a category C, then we get a dual
construction in Cop. This notion is called duality, and is often colloquially thought of as
“reversing the arrows”.

Initial and terminal objects are dual in the same sense. An initial object ∅ in C corre-
sponds to a terminal object in Cop:

∅ X vs. ∅′ X ′

and dually, a terminal object 1 in C corresponds to an initial object in Cop:

X 1 vs. X ′ 1′ .

24

2.3. COPRODUCTS

2.3.2 Coproducts

The coproduct of two objects A and B in a category C is an object A ⊔ B along with
two inclusion maps ι1 : A → A ⊔ B and ι2 : B → A ⊔ B, such that for any pair of maps
f : A→ X and g : B → X, there exists a unique map h : A ⊔ B → X making the diagram
below commute:

A

A ⊔B X

B

f

ι1

h

g

ι2

Coproducts exist in Set; the coproduct of two sets A and B is their disjoint union
A⊔B, which represents taking their union while ignoring whether or not any elements of A
are “the same” as elements of B. One way to formally define this is as

A ⊔B = (A× {1}) ∪ (B × {2})

i.e. the elements of A ⊔ B are pairs (a, 1) for a ∈ A or (b, 2) for b ∈ B. This definition
essentially forces elements of A and B to be distinct.

One interesting thing to note about coproducts is that they often look a lot weirder
than products in categories of algebraic structures, and might not be the “obvious thing” to
construct. For example, the disjoint union of two groups is not a group; for one, you would
have two identity elements, which is a problem! Instead, the coproduct G ⊔ H is the free
product G ⋆ H:

• The elements of G ⋆ H are sequences of elements (“words”) of G ∪H.

• We consider two words the same if they have the same reduced word g1h1g2h2 . . . ,
obtained by repeated combining adjacent elements from the same factor using the
group operation.

• We identify both 1G and 1H with 1G⋆H .

• The group operation in G ⋆ H is given by concatenating two words together.

For example, ifG = S3 andH = (Z,+), then the product of the elements a = ((132),−5, (13))
and b = ((13), 2) in the free product G ⋆ H is

ab = ((132),−5, (13), (13), 2)
= ((132),−5, 2)
= ((132), 3) .

25

2.3. COPRODUCTS

2.3.3 Lattices

As usual, let’s look at coproducts in posets. If (P,≤) is a poset considered as a category,
then the coproduct of elements a and b in P is an element c such that a ≤ c and b ≤ c, and
for any x with a ≤ x and b ≤ x, then c ≤ x. The element c is, perhaps unsurprisingly, the
least upper bound of a and b. This makes sense given that the product of a and b is the
greatest lower bound, and that products and coproducts are dual notions.

Exercise 2.3.1. Find the coproducts a⊔ b, b⊔ c, b⊔ d, and e⊔ f (if they exist) in the poset
shown below.

e f

b c d

a

The product a × b in a poset is more commonly called the meet of a and b, denoted
a ∧ b. Analogously, the coproduct a ⊔ b in a poset is more commonly called the join of a
and b, denoted a∨ b. A poset in which the meet and join of any two elements exist is called
a lattice.

26

2.3. COPRODUCTS

2.3.4 A First Look at Monoidal Categories

When we think of categories as algebraic structures, we are usually referring to the compo-
sition operation on morphisms as the “multiplication”. However, products give us a way to
multiply objects! (Sometimes.) Furthermore, if a category C with products has a terminal
object 1, then that terminal object operates like a unit for the binary product ×!

Theorem 2.3.2. For any object A, A× 1 ∼= A.

Proof. We can use the universal property of the product A × 1 with f = idA and g the
unique map ! : A→ 1 to deduce that the map h : A→ A× 1 is split mono, i.e. it has a left
inverse which is given by π1 : A× 1→ A.

A

A A× 1

1

h

idA

!

π1

π2

Now, we would like to show that h ◦ π1 = idA×1. To do this, we will again use the universal
property of the product, this time with the maps π1 : A × 1 → A and the unique map
! : A× 1→ 1.

A

A× 1 A× 1

1

π1

!

π1

π2

Which map could the dashed arrow be? Your first thought might be the identity idA×1.
Indeed, this morphism does make the diagram commute, since π1◦idA×1 = π1 and π2◦idA×1 =
π2. However, h ◦ π1 could also work just as well!

π1 ◦ (h ◦ π1) = (π1 ◦ h) ◦ π1
= idA ◦π1
= π1

But the dashed arrow is supposed to be unique! Therefore, the map π1 ◦ h must be equal to
the identity! This concludes our proof that h : A→ A× 1 is an isomorphism.

27

2.4. ELEMENTS

2.4 Elements

One of the principles of generalizing constructions from Set is that “a good definition should
involve sets and functions, but not elements of sets”. This is because the objects of a given
category may not be sets with extra structure, and instead might be elements of a poset,
or arbitrary symbols like ⋆ or . With that being said, what if we could define elements
themselves, without using elements?

Definition 2.4.1. Let C be a category with a terminal object 1. A global element of an
object X in C is a morphism 1→ X.

For example, the global elements of a set X in Set are maps {∗} → X, which are in
bijection with elements of X. The global elements of a poset P in Pos are maps1 {∗} → P ,
which are also in bijection with elements of P .

While this definition works well for some categories, it also fails for others. In the category
Grp of groups and group homomorphisms, the terminal object is the trivial group {∗}, but
this object is also initial, so there is only ever one morphism {∗} → G for any G. In the
category VectR of vector spaces and linear maps, the terminal object R0 is again also initial.
However, sometimes we can modify the definition of global element to still recover some
version of the “elements” of an object.

Definition 2.4.2. Let C be any category. A generalized element of an object X is a
morphism Y → X for any object Y .

While generalized elements are significantly more general than global elements, in many
cases it turns out that you can get a lot of information out of specific choices of “test object”
Y . In VectR, letting Y = R1 actually recovers what we would probably think of as the
“elements” of V . Specifically, there is a bijection V ∼= Mor(R1, V) of sets.

Another advantage of generalized elements is that they provide a nice set of invariants
for objects of a category. An invariant is some property of an object that is preserved by
isomorphism. Therefore, if we want to prove that two objects X1 and X2 are not isomorphic,
it suffices to show that some invariant distinguishes them. For a fixed Y , the set of global
elements Y → X is an invariant of X up to isomorphism. Therefore, if Mor(Y,X1) and
Mor(Y,X2) are not in bijection, then X1 and X2 must be non-isomorphic.

Example. Consider the posets P and Q depicted below:

P =
b c

a

Q =

c

b

a

Both P and Q have three global elements, so we cannot use this invariant to distinguish
them. On the other hand, we can look at maps from other posets into these. For example,
let I be the poset {0, 1} with 0 ≤ 1. There are five distinct morphisms I → P , and six
distinct morphisms I → Q. Therefore, P and Q must be non-isomorphic as posets.

1Here, we are implicitly giving the set {∗} its unique poset structure, i.e. ∗ ≤ ∗.

28

2.5. SUBOBJECTS

2.5 Subobjects

2.5.1 Products and Disjoint Unions

Given two categories C and D, we can form their product category C ×D. The objects of
C × D are pairs (C,D) ∈ Obj(C) × Obj(D), and the morphisms are pairs (f, g) : (C,D) →
(X, Y) of morphisms f : C → X and g : D → Y . Composition is defined component-wise,
i.e. (f, g) ◦ (h, i) = (f ◦ h, g ◦ i). If C = G and D = H are groups, then the product category
coincides with the direct product G×H.

We can also form the disjoint union category C ⊔D. The objects are Obj(C)⊔Obj(D)
and the morphisms are inherited from each category individually. Visually, this corresponds
to drawing a picture of both categories side-by-side.

2.5.2 Slices and Coslices

Let C be a category, and let T be an object in C. The slice category C/T (read “C over
T”) has an object for every morphism whose target is T . If f : X → T and g : Y → T are
two objects of C/T , a morphism φ : f → g is a map h : X → Y making the triangle below
commute, i.e. g ◦ h = f .

X Y

φ
=⇒

T

h

f g

Analogously, the coslice category S/C (read “C under S”) has an object for every
morphism whose source is S. If f : S → X and g : S → Y are two objects of S/C, a
morphism ϕ : f → g is a map h : X → Y making the triangle below commute, i.e. h ◦ f = g.

S

φ
=⇒

X Y

f g

h

2.5.3 Subcategories

A subcategory D of C is a category with “some of the objects and morphisms from C, but
perhaps not all of them”. We have already seen many examples of subcategories before, for
example:

• Any diagram involving sets could be thought of as a subcategory of Set.

29

2.5. SUBOBJECTS

• The category Mono(C) that you constructed as homework is a subcategory of C.

We will have a more rigorous definition of a subcategory soon!

30

2.5. SUBOBJECTS

2.5.4 Subobjects in general

Now, we will generalize the idea of a subset to general categories. As usual, we will be
making use of definitions that do not involve elements.

Definition 2.5.1. A subobject of an object X in a category C is a monomorphism U → X
for any object U .

Definition 2.5.2. A morphism from the subobject ιU : U → X to the subobject ιV : V → X
is a map f : U → V such that ιU = ιV ◦ f . Visually, this says that the diagram below
commutes.

U V

X

ιU

f

ιV

Definition 2.5.3. Given a category C and an object X, there is a category SubC(X) whose
objects are subobjects of X in C and whose morphisms are morphisms of subobjects.

One consequence of these definitions is that, while {1, 2} and {1, 3} are isomorphic as
sets, the inclusion maps {1, 2} → {1, 2, 3} and {1, 3} → {1, 2, 3} are not isomorphic as
subsets of {1, 2, 3}. On the other hand, if U → X and V → X are isomorphic as subobjects
of X, then U ∼= V as objects of C.

Note that SubC(X) is a subcategory of C/X; specifically, it is the subcategory where the
objects are only the monomorphisms whose target is X, instead of all morphisms whose
target is X.

The category SubC(X) of subobjects of X is very close to being a partial order. The only
issue is that there may be subobjects that are isomorphic but not equal. For example, in
the category of sets, the inclusion map {0} → {0, 1} and the map {5} → {0, 1} sending 5 to
0 are isomorphic, but not the same map. Therefore, SubC(X) is not partially-ordered. since
it does not satisfy the asymmetry condition. However, it does still satisfy the reflexivity and
transitivity conditions. We call such a category preordered.

Given any preorder (P,≤), we can force it to be a partial order by replacing the elements
of P by their equivalence classes under the relation x ∼ y ⇐⇒ x ≤ y and y ≤ x. Therefore,
while preorders may initially seem to be much more general than partial orders, it turns out
that they are very related. We usually ask for sets to be partially-ordered rather than
preordered just for convenience; it is easier conceptually to assume that any two isomorphic
objects are also the same!

Remark 2.5.4. The category of sets is rather special in that we could also have defined a
subset of X as a morphism X → {0, 1} to a two-object set. In other words, the set of
monomorphisms U → X (up to isomorphism) is in bijection with Mor(X, {0, 1}). This
relationship can be summarized by saying that the category Set has a subobject classifier
{1, 2}. Not many categories have one of these, but those that do tend to have interesting
properties.

31

2.6. PULLBACKS

2.6 Pullbacks

2.6.1 Motivation: Databases

Imagine that you are working on a project involving data about colleges. You might have a
database SCHOOLS with a row for each college, and columns that list information about the
schools.

Name City State Students . . .

Smith College Northampton MA 2,566 . . .
Amherst College Amherst MA 1,971 . . .
Hampshire College Amherst MA 465 . . .

Mount Holyoke College South Hadley MA 2,214 . . .
UMass Amherst Amherst MA 23,947 . . .

.

Additionally, let’s say that you also have a database CITIES containing information about
different cities.

Name State Population . . .

Northampton MA 29,311 . . .
Amherst MA 37,819 . . .

South Hadley MA 17,806 . . .
.

Perhaps we are interested in some statistic that depends on information from both tables;
for example, maybe we want to know the ratio of each school’s student population to the
population of their city. Query langauges like SQL can perform what are called cross joins,
which essentially take the Cartesian product of the rows in the two tables to produce a third
table.

Name City State Students Name State Population . . .

Smith College Northampton MA 2,566 Northampton MA 29,311 . . .
Smith College Northampton MA 2,566 Amherst MA 37,819 . . .
Smith College Northampton MA 2,566 South Hadley MA 17,806 . . .

Amherst College Amherst MA 1,971 Northampton MA 29,311 . . .
Amherst College Amherst MA 1,971 Amherst MA 37,819 . . .
Amherst College Amherst MA 1,971 South Hadley MA 17,806 . . .
Hampshire College Amherst MA 465 Northampton MA 29,311 . . .

. .

Figure 2.6.1: A cross join of the two tables.

We could definitely use this table to look up our statistic, but it also contains a bunch
of extra unnecessary rows. For example, in row 2, why do we care about the population
of Amherst if Smith College is in Northampton? The only actually relevant rows to our
question are rows 1 and 5 highlighted above (as well as some other ones not shown).

In practice, this problem would actually be solved with an inner join in SQL, not a cross
join. The inner join starts with the Cartesian product of the two tables, but only keeps a

32

2.6. PULLBACKS

subset of the rows that have matching columns (according to some specified definition of
“matching”). In the example above, we may want to specify that we only want the rows
of the table where the City column of the SCHOOLS table matches the Name column of the
CITIES table.

Name City State Students Name State Population . . .

Smith College Northampton MA 2,566 Northampton MA 29,311 . . .
Amherst College Amherst MA 1,971 Amherst MA 37,819 . . .
Hampshire College Amherst MA 465 Amherst MA 37,819 . . .

Mount Holyoke College South Hadley MA 2,214 South Hadley MA 17,806 . . .
UMass Amherst Amherst MA 23,947 Amherst MA 37,819 . . .

. .

Figure 2.6.2: An inner join on the condition SCHOOLS.City = CITIES.Name.

This idea of taking a subset of a Cartesian product is the construction that we will be
discussing today in the context of general categories.

2.6.2 Pullbacks in general

Let A and B be objects of a category C. Furthermore, choose some maps k1 : A → K and
k2 : B → K for some object K. The pullback of A and B along K, if it exists, is an object
A×K B with maps π1 : A×K B → A and π2 : A×K B → B such that for any other object
X with maps f : X → A and g : X → B commuting with k1 and k2, there is a unique map
h : X → A×K B.

A

X A×K B K

B

k1

h

f

g

π1

π2 k2

Intuitively, k1 : A → K and k2 : B → K are “keys” that tell us when elements of A and
elements of B have “something in common”. Therefore, the pullback A ×K B is like the
product of A and B, except that it only contains information about pairs (a, b) where a and
b have “something in common”.

In the category of sets, this intuitive explanation is actually completely correct: A×K B
consists of all pairs (a, b) such that k1(a) = k2(b). In symbols:

A×K B = {(a, b) ∈ A×B | k1(a) = k2(b)} .

For example, let A = B = K = N, let k1 : A → K be k1(a) = a2, and let k2 : B → K be
k2(b) = b3. Then the product A×K B consists of all pairs (a, b) such that a2 = b3:

A×K B = {(1, 1), (8, 4), (27, 9), (64, 16), . . . }

33

2.6. PULLBACKS

2.6.3 Posets

Pullbacks in posets are actually kind of boring. If we consider a poset P as a category, then
to construct a pullback we should start with two elements a, b ∈ P and an element k such
that a ≤ k and b ≤ k. The pullback is an object a×k b such that a×k b ≤ a, a×k b ≤ b, and
for any x such that x ≤ a and x ≤ b, x ≤ a ×k b. Sadly, this is just the product, which is
just the meet: a×k b = a× b = a ∧ b. The extra information involving the element k didn’t
change anything since morphisms in posets are unique.

2.6.4 Sets

Instead, let’s consider another example involving Set. Let A and B be sets, and let k1 :
A→ A ∪B and k2 : B → A ∪B be the inclusions into their union. What is the pullback in
this case?

A

X A×A∪B B A ∪B

B

h

f

g

π1

π2

As we defined before, the pullback of sets can be computed with a nice set-builder formula:

A×A∪B B = {(a, b) ∈ A×B | k1(a) = k2(b)}
= {(a, b) ∈ A×B | a = b}
= {(x, x) | x ∈ A and x ∈ B}
= {(x, x) | x ∈ A ∩B}

Therefore, the pullback A ×A∪B B is isomorphic to the intersection A ∩ B as sets. This is
rather different than the ordinary product A× B, which is just the Cartesian product. We
have seen the intersection A∩B before, though, as the product in the poset category of subsets
ordered by inclusion. Therefore, one could also think of the pullback as a generalization of
the intersection that works in the full category of sets.

34

2.7. LIMITS

2.7 Limits

2.7.1 Diagrams and Cones

So far, we have relied on commutative diagrams as visual tools for understanding composi-
tions between different morphisms. Now, we will give a precise definition of what a “diagram”
really is.

Definition 2.7.1. A diagram of type J in a category C is a functor D : J → C.

The category J of a diagram D : J → C called the index category of the diagram. Usu-
ally, index categories are very simple categories, with only a couple objects and morphisms.
We might index the objects of J and their images in C by natural numbers, e.g. D(Ji) = Di.
Some examples of common index categories include:

A0 B0 B1

C0 C2

C1

D0

D1 D2

E0 E1

Some of these diagrams have special names; for example, diagrams shaped like the fourth
index category above are often called spans or roofs. Diagrams shaped like the third index
category are called cospans.

Given a diagram D : J → C in some category C, we can talk about a cone on that
diagram. A cone (C, {ci}i) on D is a choice of object C in C and maps ci : C → Di com-
muting with the morphisms in D(J). More specifically, we require that for each morphism
dij : Di → Dj, we have that dij ◦ ci = cj.

C Di

Dj

ci

cj
dij

We can also talk about a morphism of cones. A morphism between cones (C, {ci}i)
and (C ′, {c′i}) is a morphism f in C such that f ◦ ci = c′i for all i. Visually, f causes the
diagram below to commute.

C Di

C ′

ci

f
c′i

Putting these two ideas together, we get that the collection of all cones on a particular
diagram itself forms a category. This category is denoted Cone(D); its objects are cones on
D, and its morphisms are the morphisms of cones described above.

35

2.7. LIMITS

2.7.2 Limits in general

The purpose of defining cones is to allow us to unify many of the concepts we have talked
about so far. For example, one way to describe the slice category C/T is as the category
of cones on the constant diagram on T . Additionally, it turns out that terminal objects,
products, and pullbacks are all specific examples of what are called limits.

A limit L of a diagram D : J → C is a terminal object in Cone(D).

• Unfolding the definition of a cone, this means that L comes equipped with maps to all
the objects in the image of D, and that these maps commute with the morphisms in
the image of D.

• Unfolding the definition of a terminal object, this also means that any other object X
that satisfies the first bullet point above has a unique morphism to L.

Let’s see how limits generalize the concepts we have already discussed:

• Terminal objects are limits on the empty diagram ϵ : ∅ → C. Any object of C can be
considered as a cone on ϵ, so a terminal object in Cone(ϵ) is just a terminal object in
C.

• Products are limits on the diagram D consisting of two disjoint objects A and B. A
cone on D is a choice of object X with maps X → A and X → B, so the terminal
object in Cone(D) is some object A×B with maps A×B → A and A×B → B such
that there is a unique map X → A×B for any X.

• Pullbacks are limits on cospans, i.e. diagrams D consisting of two objects A and B
with morphisms to a third object K.

While limits may seem so much more general than these examples, it turns out that they
are not any harder to find.

Theorem 2.7.2. A category C has all finite limits if and only if it has all pullbacks and a
terminal object.

A “finite limit” is simply a limit over a diagram with finitely-many objects. But wait,
there are diagrams with infinitely-many objects?

36

2.7. LIMITS

2.7.3 Example: Power Series

A formal power series is an expression of the form

a0 + a1x+ a2x
2 + a3x

3 + . . .

which may contain infinitely many terms, where the coefficients ai are real numbers. The set
of all formal power series forms a ring RJxK, i.e. we can add and multiply these expressions
just like polynomials.

In many ways, formal power series are like “infinite polynomials”. We can make this
intuition precise using a limit in the category Ring of all rings. Let Pi = R[x]/(xiR[x]) be
the ring of polynomials of degree < i. There are projection maps zij : Pi → Pj for i ≥ j
given by removing terms of degree higher than j. We can then define RJxK as the limit of
the diagram

. . . P2 P1 P0
z32

z30

z31

z21

z20

z10

consisting of all the Pi and all the projections zij between them.
Unfolding the definition of a limit, this means that the ring of power series has maps

z∞i : RJxK → Pi for all i, and that these maps commute with the other projections. This
kind of makes sense! Given any power series, we can always truncate it at a particular
power to get a polynomial; this is often done with Taylor series in calculus to get a “good
enough” approximation. This explains why RJxK should be a cone over this diagram. It is
less obvious why it should be the terminal cone on this diagram; essentially, any other ring
with “truncation” maps should factor through RJxK.

2.7.4 Limits in Set

As with pullbacks, we can give a more concrete definition of limits if we restrict our attention
to diagrams in the category Set. Unlike with pullbacks, this definition is still rather unwieldy.

The limit of a diagram D : J → Set is the set

L = {(x0, x1, . . .) ∈ D0 ×D1 × · · · | dij(xi) = xj for all dij} .

Essentially, an element of the limit L is like a choice of an element of each set in the diagram,
such that the maps dij in the diagram identify the elements with each other.

37

2.8. COLIMITS

2.8 Colimits

Recall that last time, we generalized the concepts of terminal objects, products, and pullbacks
using limits. A limit is a terminal object in the category Cone(D) of cones on some diagram
D : J → C. Today, we will generalize initial objects, coproducts, and pushouts, using
constructions called colimits.

Wait, what is a pushout?

2.8.1 Pushouts

Pushouts are the dual concept to pullbacks. More specifically, given objects A and B of
some category C, as well as maps g1 : G → A and g2 : G → B from some object G, the
pushout is an object A ⊔G B equipped with maps ι1 : A → A ⊔G B and ι2 : B → A ⊔G B
(commuting with g1 and g2). The pushout is also required to satisfy the universal property
that, for any object Y with maps f1 : A→ Y and f2 : B → Y (commuting with g1 and g2),
there is a unique map h : A ⊔G B → Y .

A

G A ⊔G B Y

B

f1

ι1g1

g2

h

f2

ι2

In the category of sets, we can describe the pushout more explicitly as

A ⊔G B = (A ⊔B)/ ∼

where ∼ is the equivalence relation generated by setting (a, 1) ∼ (b, 2) if and only if g1(x) = a
and g2(x) = b for some x ∈ G. Intuitively, we are “gluing” the sets A and B together along
the set G; each element of G tells us to identify an element of A with an element of B.

Example. Consider C = Set, and let G = A ∩ B with the inclusion maps g1 : A ∩ B → A
and g2 : A ∩B → B. Then the pushout A ⊔A∩B B is isomorphic to the union A ∪B.

Example. Consider C = Set, and let G = ∅ with the unique maps g1 and g2 (since G is
initial). Then the pushout A ⊔∅ B is isomorphic to the disjoint union A ⊔B.

Example. Consider C = Set, and let G = {∗}. We can consider A and B as pointed sets
(A, g1(∗)) and (B, g2(∗)). Then the pushout A⊔{∗}B is isomorphic to their coproduct in the
category Set∗. This is sometimes called the wedge sum of the two pointed sets.

38

2.8. COLIMITS

2.8.2 Colimits in general

We defined a limit as a terminal object in the category Cone(D) of cones on a diagram
D : J → C. The dual definition, then, is that a colimit is an initial object in the category
Cocone(D) of cocones on a diagram D : J → C.

A cocone on a diagram D : J → C is an object C of C along with maps ci : Di → C for
all objects Di in the diagram D, such that the maps ci commute with the morphisms in D.

Di C

Dj

dij

ci

cj

A morphisms of cocones from (C, {ci}i) to (C ′, {c′i}) is a map f : C → C ′ commuting
with the maps ci and c

′
i for all i, i.e.

Di C

C ′

ci

c′i f

is a commutative diagram. Like cones, cocones on a fixed diagram D and cocone morphisms
for a category Cocone(D).

Colimits generalize many of the constructions we have seen so far.

• Initial objects are colimits on the empty diagram ϵ : ∅ → C. Any object of C can be
considered as a cocone on ϵ, so an initial object in Cocone(ϵ) is just an initial object
in C.

• Coproducts are colimits on the diagram D consisting of two disjoint objects A and B.
A cocone on D is a choice of object Y with maps A → Y and B → Y , so the initial
object in Cocone(D) is some object A ⊔ B with maps A → A ⊔ B and B → A ⊔ B
such that there is a unique map A ⊔B → Y for any Y .

• Pushouts are colimits on spans, i.e. diagrams D consisting of two objects A and B with
morphisms from a third object G.

As before, we also have a theorem about when categories have colimits.

Theorem 2.8.1. A category C has all finite colimits if and only if it has all pushouts and
an initial object.

39

2.8. COLIMITS

2.8.3 Example: Infinite Sequences

2.8.4 Colimits

Let’s say that we have a diagram in VectR consisting of an inclusion of R0 into R1, R1 into
R2, and so on.

R0 R1 R2 . . .
ι0 ι1 ι2

More specifically, we could define the map ιi : Ri → Ri+1 by sending the standard basis
vector e⃗i in Ri to the standard basis vector e⃗i in Ri+1; essentially, this inclusion map just
adds a zero to the end of each vector in Ri.

What is the colimit of this sequence? We’re looking for some vector space C with in-
clusions from each Ri into C, such that inclusions into any other space factor through C.
It turns out that we can think of elements of this space as infinitely-long vectors with only
finitely-many nonzero entries. Let’s call this space R∞. This space can also be obtained as
the coproduct of infinitely-many copies of R1.

2.8.5 Limits

Now, instead consider the diagram in VectR consisting of projection maps Ri → Ri−1.

. . . R2 R1 R0π3 π2 π1

More specifically, we could define the map πi : Ri → Ri−1 as projecting onto the first i − 1
coordinates of our space, i.e. dropping the last component of a vector in Ri.

What is the limit of this sequence? We’re looking for some vector space L with projections
to each Ri, such that projections from any other space factor through L. It turns out that we
can think of elements of this space as infinitely-long vectors, where any number of components
can be nonzero. Since this is just the vector space of infinite sequences of real numbers, we
can call it RN. This space can also be obtained as the product of infinitely-many copies of
R1.

2.8.6 Another Example

We can use the above techniques to construct “infinite” versions of a lot of different algebraic
objects. For example, we can consider the inclusions Si → Sj of symmetric groups, where
i ≤ j. If we write elements of Si in cycle notation, these inclusions are induced by the
identity map. We can consider the colimit of the diagram

S0 S1 S2 . . .
ι0 ι1 ι2

to build the group of “permutations on an infinite set with finite support”. Note that this
is not isomorphic to the group Aut(N) of automorphisms of a countably-infinite set. The
latter contains permutations that “move” infinitely-many elements, whereas the former does
not.

40

Chapter 3

Functors

41

3.1. CATEGORIES, AGAIN

3.1 Categories, again

3.1.1 Limits and Colimits in Set

As with pullbacks, we can give a more concrete definition of limits if we restrict our attention
to diagrams in the category Set. Unlike with pullbacks, this definition is still rather unwieldy.

The limit of a diagram D : J → Set is the set

L = {(x0, x1, . . .) ∈ D0 ×D1 × · · · | dij(xi) = xj for all dij} .

Essentially, an element of the limit L is like a choice of an element of each set in the diagram,
such that the maps dij in the diagram identify the elements with each other.

Dually, the colimit of a diagram D : J → Set is the set

C = (D0 ⊔D1 ⊔ . . .)/ ∼ ,

where ∼ is the equivalence relation generated by all equations of the form x = dij(x) for
x ∈ Di and some morphism dij : Di → Dj. Essentially, an element of the colimit C is like
a choice of an element of one set in the diagram, modulo the relation identifying elements
related by the maps dij.

42

3.1. CATEGORIES, AGAIN

3.1.2 Small and Large Categories

Now that we have become familiar with categories, we are starting to run into more “meta”
questions like “Is there a category of all categories?” Before we talk about this, we should
first question the perhaps most fundamental category, Set.

Let’s review the definition of a category from the first week. A category C is

• a collection Obj(C) of objects,

• a collection Mor(A,B) of morphisms for any A,B ∈ Obj(C), and

• an associative, unital operation ◦ : Mor(B,C) × Mor(A,B) → Mor(A,C) for any
A,B,C ∈ Obj(C).

It is actually important that we used the word “collection” here instead of set. The objects
of Set cannot themselves form a set, since that would imply that we have a “set of all sets”.
This is a construction that most versions of set theory prefer to avoid, so that our categories
are paradox-free.

On the other hand, we have definitely seen categories where the objects actually do form
a set. Many examples like groups or monoids have only a single object. Other examples, like
posets, have a finite number of objects, or maybe a countably-infinite number of objects. Such
categories with the property that Obj(C) and Mor(C) are sets are called small categories.
Here, we are using Mor(C) to denote the collection of all morphisms in C, regardless of source
and target. Categories that do not satisfy this property are called large.

Therefore, with these sizes issues sorted out, we can actually talk about a “category of
categories”, as long as we restrict our categories a bit. The category of small categories
Cat has an object for each small category, and a morphism C → D for each functor F :
C → D. It is worth noting that, while the objects of Cat are small categories, Cat itself is
a large category.

Let’s go back to Set. Even though Obj(Set) is not a set, if we specify two sets A and
B, then the collection of all functions A→ B actually does form a set. Therefore, if we just
wanted to generalize the properties of the category of sets, we could have defined a category
to have a set of morphisms Mor(A,B) for each pair of objects (A,B). Categories in which
Mor(A,B) is always a set are called locally small categories.

As an easy first example, all small categories are also locally small. For examples of locally
small categories that are not small, we can look at categories whose objects are algebraic
structures that can be “built” on any set. For example, Pos, Top, and Group are all large,
but locally small.

Question. Is Cat locally small?

43

3.2. REPRESENTABLE FUNCTORS

3.2 Representable Functors

Let C be a locally small category, so that Mor(A,B) is a set for each pair of objects A and
B. Choose particular objects A and B. If we also choose a morphism β : B → B′, then
this induces a function Mor(A, β) : Mor(A,B) → Mor(A,B′). This function is defined as
Mor(A, β)(f) = β ◦ f .

A

B B′

f β◦f

β

If we fix an object A, but treat the object B as a parameter, we get that Mor(A,−) is
a functor C → Set. This functor sends an object B to the set Mor(A,B), and a morphism
β : B → B′ to the function Mor(A, β) : Mor(A,B) → Mor(A,B′). This functor is called a
representable functor; we say that the functor is represented by the object A.

To check that Mor(A,−) is a functor, we would need to show that it respects the identity
morphisms and compositions. Here is a picture of what this might look like for compositions.

A

B B′ B′′

f
β◦f

β′◦β◦f

β β′

Similarly, we could instead fix B, and treat A as a variable parameter. If we have some
morphism α : A → A′, then it induces a function Mor(α,B) : Mor(A′, B) → Mor(A,B);
note the swapped direction! This function is defined as Mor(α,B)(f ′) = f ′ ◦ α.

A A′

B
f ′◦α

α

f ′

In this case, we no longer get that Mor(−, B) is a (covariant) functor C → Set, since it
swaps the order of morphisms!

A A′ A′′

B
f ′◦α′◦α

α

f ′◦α′

α′

f ′

Instead, this is a contravariant functor, i.e. a functor Cop → Set. This functor is also called
a representable functor; sometimes people use the term “corepresentable” to indicate the
contravariance.

44

3.2. REPRESENTABLE FUNCTORS

3.2.1 Limit Preservation

A functor F : C → C ′ is said to preserve limits if for any diagram D : J → C with a limit
L, the object F (L) is a limit of the diagram F ◦D : J → C ′. The functor should also respect
the projections L→ Di for each object Di of the diagram D. Functors that preserve limits
are called continuous. If we use the notation lim←−D to denote the limit of the diagram D,
then this relationship is sometimes written

F (lim←−D) = lim←−F (D) .

Functors can also preserve colimits in the same sense, i.e.

F (lim−→D) = lim−→F (D) ,

where lim−→D denotes the colimit of the diagram D. Such functors are called cocontinuous.
We can find many examples of continuous functors by looking at sets of morphisms.

Theorem 3.2.1. For any object A, the covariant representable functor Mor(A,−) preserves
limits.

For example, in the category of sets, there is a bijection

Mor(A,B × C)→ Mor(A,B)×Mor(A,C) .

On the other hand, while one might expect the corepresentable functors to preserve
colimits, they in fact do something a bit weirder.

Theorem 3.2.2. For any object B, the contravariant representable functor Mor(−, B) maps
colimits to limits.

For example, in the category of sets, there is a bijection

Mor(A ⊔B,C)→ Mor(A,C)×Mor(B,C) .

Here, the colimit ⊔ is turned into a limit ×.

45

3.3. NATURAL TRANSFORMATIONS

3.3 Natural transformations

Let C be a locally-small category. Recall that last time we discussed how to think of the
morphism set Mor(A,B) as a functor Mor(−,−) : Cop×C → Set. If we fix the first parameter,
we get the covariant functor Mor(A,−) represented by the object A. If we instead fix the
second parameter, we get the contravariant functor Mor(−, B) represented by the object B.

Consider the power set functor P(−) : Set→ Set on the category of sets. This functor
is not of the form Mor(A,−) or Mor(−, B), since subsets are not maps from or into a fixed
object. On the other hand, for any set X, we have an isomorphism P(X) ∼= Mor(X, {0, 1}).
Intuitively, we can think of the functor P(−) as being “isomorphic” to a representable
functor, even if it isn’t equal to one. Before we define isomorphisms of functors, though, we
first need to talk about what a map between functors should look like!

3.3.1 Natural transformations in general

Let C and D be categories, and let F,G : C → D be two functors. A natural transfor-
mation θ : F → G is, for every object C ∈ C, a morphism θC : F (C) → G(C) in D that
commutes with the images of the morphisms from C. More specifically, for any f : C → C ′

in C, the following diagram should commute.

F (C) G(C)

F (C ′) G(C ′)

θC

F (f) G(f)

θC′

The maps θC are called the components of θ.

3.3.2 Example: idSet → Mor({∗},−)
For example, let F = idSet : Set → Set be the identity functor on Set, and let G =
Mor({∗},−) : Set → Set be the covariant functor represented by {∗}. The functor
Mor({∗},−) sends a set to its global elements, which should be isomorphic to the origi-
nal set. We can define a natural transformation θ : idSet → Mor({∗},−) by defining a
component θX for each set X. Specifically, we can send x ∈ X to the constant function
constx : {∗} → X, i.e. θX(x) = constx.

X Mor({∗}, X)

Y Mor({∗}, Y)

x 7→constx

f Mor({∗},f)

y 7→consty

46

3.3. NATURAL TRANSFORMATIONS

3.3.3 Example: idSet → P(−)
Let F = idSet : Set → Set be the identity functor and let G = P(−) : Set → Set be the
power set functor. We can define a natural transformation θ : idSet → P(−) on a set X to
be θX(x) = {x}.

X P(X)

Y P(Y)

x 7→{x}

f P(f)

y 7→{y}

3.3.4 Example: Mor(−, {0, 1})→ P(−)
Before we can define a natural transformation between these two functors, we should first
deal with an issue of variance; specifically, Mor(−, {0, 1}) is a contravariant functor, whereas
P(−), as we have defined it, is covariant. Therefore, the former has source Setop and the
latter has source Set, so we cannot even define a natural transformation between them!
Thankfully, it turns out that there are actually two power set functors, and we can just use
the contravariant one. Define the contravariant power set functor P : Setop → Set to
assign to each set X its power set P(X), and to each function f : X → Y the inverse image
function P(f) : P(Y)→ P(X) defined by P(f)(B ⊆ Y) = f−1(B) ⊆ A.

Now, let F = Mor(−, {0, 1}) be the contravariant functor represented by {0, 1}, and let
G = P(−) be the contravariant power set functor. We can define a natural transformation
θ : Mor(−, {0, 1}) → P(−) via components θX : Mor(X, {0, 1}) → P(X). Specifically, let
θX(φ) = φ−1(1).

Mor(X, {0, 1}) P(X)

Mor(Y, {0, 1}) P(Y)

φ7→φ−1(1)

Mor(f,{0,1})

ψ 7→ψ−1(1)

P(f)

3.3.5 Example: X × Y → Y ×X
Let C be any category with binary products. Let F = − × − : C × C → C be the product
functor, and let G = −×− : C × C → C also be the product, but reversing the order of the
inputs. We can define a natural transformation θ : F → G on an object (X, Y) of C × C to
be the map θ(X,Y) : X × Y → Y ×X written in components as (π2, π1).

X × Y Y ×X

W × Z Z ×W

(π2,π1)

f×g g×f

(π2,π1)

47

3.4. NATURAL ISOMORPHISMS

3.4 Natural isomorphisms

Let C and D be categories, and let F,G : C → D be two functors. Recall that last time we
defined a natural transformation θ : F → G to be, for every object C ∈ C, a morphism
θC : F (C) → G(C) in D that commutes with the images of the morphisms from C. More
specifically, for any f : C → C ′ in C, the following diagram should commute.

F (C) G(C)

F (C ′) G(C ′)

θC

F (f) G(f)

θC′

3.4.1 Properties of natural transformations

Natural transformations can be composed. If θ : F → G and η : G → H are natural
transformations, then their composition η ◦ θ : F → H is given in components by (η ◦ θ)C =
ηC ◦ θC .

For any categories C and D, we can define the functor category Fun(C,D); the objects
of this category are functors F : C → D, and the morphisms are natural transformations
θ : F → G.

We can now define what it means for two functors F and G to be “isomorphic”. Specif-
ically, F : C → D and G : C → D are naturally isomorphic if and only if they are
isomorphic as objects in the functor category Fun(C,D). This means that there is a natural
transformation θ : F → G with an inverse η : G→ F such that

η ◦ θ = idF and θ ◦ η = idG .

Thankfully, there is an easier way to check if a natural transformation is a natural iso-
morphism.

Theorem 3.4.1. A natural transformation θ : F → G is a natural isomorphism if and only
if each component θC is an isomorphism.

Therefore, if F,G : C → Set are two functors, then a natural transformation θ : F → G
is an isomorphism if and only if θC : F (C)→ G(C) is a bijection for all C.

This lets us talk about what a representable functor is in general. A functor F : C → Set
is representable if and only if it is naturally isomorphic to Hom(A,−) or Hom(−, B) for
some object A or B.

In our examples from last class, we have essentially already shown that the identity
functor idSet

∼= Mor({∗},−) is representable, as well as the contravariant power set functor
P(−) ∼= Mor(−, {0, 1}). As another example, on this week’s homework, you are basically
showing that the forgetful functor U : Grp→ Set is representable. In fact, many forgetful
functors are representable; we have also already shown that the forgetful functor V : Vectk →
Set is representable as well whenever we talked about generalized elements, with V ∼=
Mor(R1,−).

48

3.4. NATURAL ISOMORPHISMS

3.4.2 Limit preservation

A functor F : C → C ′ is said to preserve limits if for any diagram D : J → C with a limit
L, the object F (L) is a limit of the diagram F ◦D : J → C ′. The functor should also respect
the projections L→ Di for each object Di of the diagram D. Functors that preserve limits
are called continuous. If we use the notation lim←−D to denote the limit of the diagram D,
then this relationship is sometimes written

F (lim←−D) = lim←−F (D) .

Functors can also preserve colimits in the same sense, i.e.

F (lim−→D) = lim−→F (D) ,

where lim−→D denotes the colimit of the diagram D. Such functors are called cocontinuous.
We can find examples of (co)continuous functors by looking at representable functors.

Theorem 3.4.2. Covariant representable functors preserve limits.

For example, in the category of sets, there is a bijection

Mor(A,B × C)→ Mor(A,B)×Mor(A,C) .

On the other hand, while one might expect corepresentable functors to preserve colimits,
they in fact do something a bit weirder.

Theorem 3.4.3. Contravariant representable functors map colimits to limits.

For example, in the category of sets, there is a bijection

Mor(A ⊔B,C)→ Mor(A,C)×Mor(B,C) .

Here, the colimit ⊔ is turned into a limit ×.
As another example, let’s look at the contravariant representable functor P : Setop →

Set. Since we know that this functor sends colimits to limits, we can deduce that

• P(∅) ∼= {∗},

• P(A ⊔B) ∼= P(A)× P(B) for two sets A and B, and

• P(A ⊔G B) ∼= P(A)×P(G) P(B) assuming we have maps G→ A and G→ B for some
set G.

49

3.5. EQUIVALENCE OF CATEGORIES

3.5 Equivalence of categories

Let FinCard be the category whose objects are the sets [n] = {1, 2, . . . , n} for each n ∈ N,
and whose morphisms are the functions bewteen them. This is a full subcategory of Set. For
comparison, let FinSet be the category whose objects are finite sets and whose morphisms
are functions between them. This is also a full subcategory of Set. Are these two categories
isomorphic?

If FinCard and FinSet were isomorphic, we would be able to find functors F : FinCard→
FinSet and G : FinSet → FinCard such that G ◦ F = idFinCard and F ◦ G = idFinSet.
However, such functors cannot exist! For one, FinCard is a small category, whereas FinSet
is a large (but locally small) category. Therefore, the collections of objects of these two
categories cannot be in bijection with one another.

At the same time, these two categories are rather similar. We can come up with an
inclusion functor F : FinCard → FinSet rather easily. While F doesn’t have an inverse,
if we weaken the requirements a bit, we can find a functor G : FinSet → FinCard that
is “like an inverse”, in that G ◦ F ∼= idFinCard and F ◦ G ∼= idFinSet. Here, ∼= denotes that
these compositions are naturally isomorphic to the identity functors, but may not be equal
to them. The functors F and G are called weak inverses. The functor G sends a set S with
cardinality n to the set [n]. Furthermore, G actually chooses a specific isomorphism S → [n]
for each S, so that we can make coherent choices of where to send morphisms between sets.
Since we are choosing isomorphisms S → [n] for each set, this construction requires the
axiom of choice, which is not incredibly important but maybe worth noting. The functors F
and G described above exhibit an equivalence of categories between FinCard and FinSet.

Definition 3.5.1. An equivalence of categories is a pair of functors F : C → D and
G : D → C such that G ◦ F ∼= idC and F ◦G ∼= idD.

Two categories C and D are equivalent if they are related by such a pair of functors.
We denote this relationship by C ≃ D.

The functor F above is full and faithful, which is to say that for any objects [m] and [n] of
FinCard, the induced map Mor([m], [n]) ∼= Mor(F ([m]), F ([n])) is a bijection. Furthermore,
while F is not surjective on objects, every object of FinSet is isomorphic to an object in
the image of F , since every finite set has a cardinality. This property has a special name.

Definition 3.5.2. A functor F : C → D is essentially surjective if and only if every
object D of D is isomorphic to F (C) for some object C of C.

Essentially surjective functors can be thought of as “surjective on objects, up to isomor-
phism”. There is a theorem relating this property to equivalences of categories.

Theorem 3.5.3. Given a functor F : C → D, the following are equivalent:

• F has a weak inverse, and therefore induces an equivalence of categories.

• F is full, faithful, and essentially surjective.

50

3.5. EQUIVALENCE OF CATEGORIES

3.5.1 Example: Partial functions

A partial function f : A → B is a subset U ⊆ A along with a function f : U → B. We
can think of f as a function on A that is only “partially defined”. Visually, we can think of
the inclusion map ι : U → A and the function f : U → B as the two maps in a span.

U

A B

ι f

How do we compose partial functions? Given partial functions f : A→ B defined on Uf ⊆ A
and g : B → C defined on Ug ⊆ B, we can get a partial function g ◦ f : A→ C by defining
Ug◦f = f−1(Ug). Diagrammatically, we can see this as the pullback of the two spans.

Ug◦f

Uf Ug

A B C

ιf f ιf g

There is a category Par whose objects are sets and whose morphisms are partial functions.
While this may seem like an entirely new category, it turns out that it is actually equivalent
to the category Set∗ of pointed sets and based maps. Let F : Par→ Set∗ be the map that
takes a set X and appends a base point ∗, i.e. F (X) = X ⊔{∗}; this set is often abbreviated
X+. Given a partial function f : X → Y , we can define F (f) to be

F (f)(x) =

{
f(x) x ∈ Uf
∗ otherwise

.

The functor F has a weak inverse G : Set∗ → Par defined on objects as G((X, x0)) =
X \{x0}. On a morphism f : (X, x0)→ (Y, y0), we define the partial map G(f) : X \{x0} →
Y \ {y0} to be defined whenever x ̸= x0 and f(x) ̸= y0.

Note that G◦F is actually the identity on Par, since F adds a distinguished point which
is then removed by G, and similarly for the morphisms. However, F ◦G is not the identity on
Set∗, since we are removing the basepoint of (X, x0) and replacing it with ∗. While (X, x0)
is certainly isomorphic to (X \ {x0} ⊔ {∗}, ∗), these sets are not equal. Nevertheless, these
isomorphisms tell us that F ◦G is naturally isomorphic to idSet∗ . Therefore, Par and Set∗
are equivalent as categories.

51

3.6. EQUIVALENCE, CONTINUED

3.6 Equivalence, continued

3.6.1 Skeletons

Recall the categories FinCard and FinSet from last class. The objects of FinCard were
sets [n] = {1, . . . , n}, and the objects of FinSet were finite sets. Both categories had
functions as their morphisms. We saw that these two categories were equivalent, even though
they are not equal.

One special property that FinCard has is that [m] ∼= [n] only when m = n. In other
words, if two objects of FinCard are isomorphic, then they are actually the same object.
Categories satisfying this property are called skeletal.

Theorem 3.6.1. Every category C is equivalent to a skeletal subcategory D of C.

Proof. We can use the axiom of choice to choose, for each isomorphism class of objects in C,
a representative object. The category D is then the full subcategory on these representatives.

Some examples:

• FinCard is a skeletal subcategory of FinSet.

• The category Set of all sets has a skeletal subcategory Card with one object for every
possible cardinality that a set could have.

• The category FinVectR of finite-dimensional real vector spaces has a skeletal subcat-
egory whose objects are the vector spaces Rn for each n.

3.6.2 Preorders

A preorder on a set X is a reflexive and transitive relation ≤. Preorders are like partial
orders without the antisymmetry condition. A set equipped with a preorder is sometimes
called a “proset”, analogous to the poset terminology.

We can think of preordered sets as categories in the same way as posets; given a preordered
set (X,≤), we construct a category X with an object x for each x ∈ X, and a morphism
x→ y for each relation x ≤ y. For example, here are some Hasse diagrams of preorders.

e f

c d

a b

x y z

m n

r

q p

Unlike with partial orders, Hasse diagram of preorders are not unique! For example, in
the middle diagram above, we could instead have added arrows y → x and z → y instead of
the single arrow z → x, and we would have another non-redundant set of relations.

52

3.6. EQUIVALENCE, CONTINUED

Lack of asymmetry means that preorders may have elements x and y such that x ≤ y
and y ≤ x, but x ̸= y. Let’s denote the relationship x ≤ y and y ≤ x by x ∼ y. We can
show that ∼ is an equivalence relation!

• Reflexivity: It is always true that x ≤ x, so x ∼ x.

• Symmetry: If x ∼ y, then x ≤ y and y ≤ x, so y ∼ x.

• Transitivity: If x ∼ y ∼ z, then x ≤ y, y ≤ x, y ≤ z and z ≤ y. Therefore, by
transitivity of ≤, we get that x ≤ z and z ≤ x, so x ∼ z.

Furthermore, the preorder ≤ respects this equivalence relation. This means that the equiv-
alence classes of ∼ are also preordered by ≤; in fact, the equivalence classes form a partial
order!

Theorem 3.6.2. Any preordered set X is equivalent as a category to a poset P.

3.6.3 Groupoids

A group is a category with one object in which every morphism is an isomorphism. In the
same vein, a groupoid is a category with potentially any number of objects in which every
morphism is an isomorphism.

If groups represent symmetries, then groupoids can be thought of as representing sym-
metries of things with multiple “states”. For example, the dihedral group D4 represents the
symmetries of a 2D square in 3D space. This group has eight elements; four rotations, and
four more rotations followed by a flip. Now, let’s assume that the two faces of the square are
painted different colors. If we flip the square, we now no longer have a symmetry; instead,
flips bring us to a different “state”. However, we can still encode this behavior in a groupoid,
by having two objects; one for each face of the square.

If Mor(X, Y) is nonempty for any two objects X and Y of a groupoid G, then we say
that G is connected. In a connected groupoid, one can show that any two objects have
isomorphic endomorphism monoids.

Remark 3.6.3. In fact, the endomorphisms of an object are not just a monoid, they actually
form a group. Invertible endomorphisms of an object are called automorphisms, and the
collection of all automorphisms of an object X form the automorphism group Aut(X).
Therefore, we might say that any two objects in a connected groupoid have isomorphic
automorphism groups.

In some sense, groupoids are not much different than groups.

Theorem 3.6.4. Any nonempty connected groupoid G is equivalent as a category to some
group G.

This group G can be taken to be the automorphism group of any object of G.

53

3.7. ADJOINTS

3.7 Adjoints

3.7.1 Free Vector Spaces

Recall that a basis for a vector space V is a set B = {β⃗i}i∈I of vectors such that any v⃗ ∈ V
can be written as a linear combination c1β⃗1 + . . . cnβ⃗n of vectors in B. Usually, we think of
bases as things that we can find given vector spaces, e.g. if V = R4, then we know that we
can pick the standard basis {e⃗1, e⃗2, e⃗3, e⃗4}.

However, we can also go the other direction! Given a set S = {s1, . . . , sn}. We can define
the free vector space RS on the set S to be the set of all formal linear combinations
c1s1 + · · · + cnsn. Here, the word “formal” indicates that we are not assuming that the
elements of S were previously equipped with any notion of addition or scalar multiplication.
Instead, we are simply defining a vector space RS for which S is a basis.

For example, a few elements of the free vector space on the set S = {a, b, c} are c, 2a+ b,
and 1

2
a− b+ c. This vector space is isomorphic, but not equal, to R3.

As another example, we can think of the vector space R[x] of polynomials in one variable
as the free vector space generated by the set {1, x, x2, . . . }. Any polynomial in x is a linear
combination of these elements, and there are no linear dependencies between them.

This “free vector space” construction is also functorial; if we have a function f : S → S ′

of sets, then we get an induced linear transformation RS → RS′
by sending

c1s1 + · · ·+ cnsn 7→ c1f(s1) + · · ·+ cnf(sn) .

We may denote this functor
Now, let’s think about how we often define maps between vector spaces. If we have two

vector spaces V and W , and we want to define a linear transformation T : V → W , we often
do so by specifying T (β⃗i) for each basis vector βi in a basis for V . In other words, we are
specifying a function from a basis B of V to the underlying set of the vector space W . It is
actually a rather remarkable fact that this is equivalent to specifying a linear transformation.
We can formalize this correspondence using the forgetful functor U : VectR → Set.

Theorem 3.7.1. For any vector space W , there is a bijection

Mor(RS,W) ∼= Mor(S, U(W)) .

In fact, this bijection extends to natural isomorphisms in either parameter, i.e.

Mor(R−,W) ∼= Mor(−, U(W))

and
Mor(RS,−) ∼= Mor(S, U(−)) .

Given this kind of relationship, we would say that the functors R− : Set → VectR and
U : VectR → Set are adjoint functors.

Definition 3.7.2. Two functors F : C → D and G : D → C are adjoint if and only if there
exist isomorphisms

Mor(F (X), Y) ∼= Mor(X,G(Y))

54

3.7. ADJOINTS

for all objects X of C and Y of D. Furthermore, these isomorphisms should extend to
a natural isomorphism Mor(F (−),−) ∼= Mor(−, G(−)) as functors Cop × D → Set. The
functor F is called the left adjoint, and G is called the right adjoint.

55

3.7. ADJOINTS

3.7.2 Currying

Let’s consider a pair of adjoint functors from Set to itself. Fix a set B, and let F = −×B
be the functor that sends any input set A to A×B. Let G = Mor(B,−) be the functor that
sends any input set C to Mor(B,C). These two functors are adjoint, which is to say that
for any sets A and C, we have the following natural isomorphism:

Mor(A×B,C) ∼= Mor(A,Mor(B,C)) .

Intuitively, this tells us that a function from A × B → C is the same as a function from A
to Mor(B,C). We can explicitly write down a bijection θ on an input φ ∈ Mor(A×B,C) as

θ(φ)(a)(b) = ϕ(a, b) .

The inverse θ−1 on ψ ∈ Mor(A,Mor(B,C)) is

θ−1(ψ)(a, b) = ψ(a)(b) .

Applying θ to a function is known as currying in computer science.

3.7.3 Free-forgetful Adjunctions

Our first example of the free vector space functor R− is actually a special case of a free-
forgetful adjunction. This is the general term for any situation where a forgetful functor
U : D → C has a left adjoint F : C → D. “Forgetful functor” is really an informal designation,
but usually the objects of D are thought of as “objects of C with extra struture”.

For example, the forgetful functor U : Grp → Set has a left adjoint F : Set → Grp
given by the free group functor. This functor takes as input a set S and constructs the
group F (S) generated by the elements of S. In other words, elements of F (S) are sequences
of elements of S with concatenation as the group operation, subject to some relations.

More examples of forgetful functors with “free” left adjoints:

• U : Set∗ → Set

• U : Ab→ Set

• U : Ab→ Grp

• U : Pos→ Set

• U : Ring→ Grp (the group of units functor)

3.7.4 Limit Preservation

Theorem 3.7.3. If F : C → D and G : D → C are a pair of adjoint functors, where F is
the left adjoint and G is the right adjoint, then F preserves colimits, and G preserves limits.

For example, the above theorem combined with the free-forgetful adjunction between Set
and Grp tells us that

F (X ⊔ Y) ∼= F (X) ⋆ F (Y) and U(G×H) ∼= U(G)× U(H) .

56

3.8. CARTESIAN CLOSED CATEGORIES

3.8 Cartesian closed categories

3.8.1 Adjoints

Recall that two functors F : C → D and G : D → C are adjoint if and only if there exist
isomorphisms

Mor(F (X), Y) ∼= Mor(X,G(Y))

for all objects X of C and Y of D. Furthermore, these isomorphisms should extend to
a natural isomorphism Mor(F (−),−) ∼= Mor(−, G(−)) as functors Cop × D → Set. The
functor F is called the left adjoint, and G is called the right adjoint.

We have many examples of adjoint pairs of functors, including

• the product functor −×B : Set→ Set and the set-of-morphisms functor Mor(B,−) :
Set→ Set,

• the free vector space functor R− : Set→ VectR and the forgetful functor U : VectR →
Set, and

• the abelianization functor −ab =: Grp → Ab and the forgetful functor U : Ab →
Grp.

Today, we’re going to look at more examples like the first one above.

3.9 Cartesian closed categories in general

A category C which has finite products is called Cartesian closed if the product functor
− × B : C → C has a right adjoint for all objects B. When it exists, this adjoint is often
denoted −B or [B,−]. In formulas, this means that

Mor(A×B,C) ∼= Mor(A,CB) i.e. Mor(A×B,C) ∼= Mor(A, [B,C])

for all objects A, B, and C of C. The functor [−,−] : Cop×C → C is often called the internal
hom or exponential. Note that [−,−] is different from Mor(−,−) when C ̸= Set, as the
latter is a functor Cop × C → Set. Therefore, the right adjoint to the product functor gives
us a way to think about the morphisms as forming an object of the category, instead of just
a set.

We can define what it means for an object CB to be an exponential in more concrete
terms as well. Given two objects B and C of C, the exponential is an object CB along with
an “evaluation” morphism eval : CB ×B → C. Furthermore, the exponential should satisfy
the universal property that for any object A and morphism f : A×B → C, there is a unique
morphism f̃ : A→ CB such that the following diagram commutes.

CB ×B C

A×B

eval

f̃×idB
f

57

3.9. CARTESIAN CLOSED CATEGORIES IN GENERAL

3.9.1 Propositions

One interesting example of a Cartesian closed category is the category of logical propositions1.
Let Prop denote the category whose objects are logical propositions, and let there be a
morphism from P to Q exactly when we can prove Q assuming P holds. The product in
Prop is the logical and operator, i.e. P × Q = P ∧ Q. The exponential in Prop is the
conditional, i.e. QP = P =⇒ Q. Note that in previous examples, the exponential was like
a morphism set with extra structure, whereas this case is a bit different.

3.9.2 Posets

The category Pos of posets is also cartesian closed! Given two order homomorphisms f, g :
P → Q, we say that f ≤ g if and only if f(p) ≤ g(p) for all p ∈ P . With this ordering, the
set Mor(P,Q) is itself a poset [P,Q], and we have natural isomorphisms

Mor(P ×Q,R) ∼= Mor(P, [Q,R])

for all posets P , Q, and R.

3.9.3 Closed categories

Some categories have exponential objects, but they do not arise as adjunct functors of the
product. In general, a category with exponential objects is called a closed category; we
add the “Cartesian” modifier only when the exponentials and products are related by an
adjunction.

1There are many such ways to think about logic in categorical terms, but this is a relatively simple one.

58

3.10. MONOIDAL CATEGORIES

3.10 Monoidal categories

3.10.1 Review

Recall that two functors F : C → D and G : D → C are adjoint iff we have a natural
isomorphism

Mor(F (X), Y) ∼= Mor(X,G(Y))

for all objectsX of C and Y ofD. Cartesian closed categories are those that have the property
that the product functor − × B has a right adjoint; we call this adjoint the exponential or
internal hom, and denote it −B or [B,−].

Some examples of Cartesian closed categories included Set, Pos, and Prop.
It is actually true that in any Cartesian closed category, we can strengthen the adjunction

above between the product and exponential to be an isomorphism in C, i.e.

[X × Y, Z] ∼= [X, [Y, Z]]

or, written another way,
ZX×Y ∼= (ZY)X .

3.10.2 Vector Spaces

One category that we might expect to be Cartesian closed is VectR, the category of real
vector spaces and linear maps. For example, there is a nice way to consider Mor(V,W) as
a vector space [V,W] itself, since we can add and scale linear transformations. However, we
run into issues trying to make such an adjunction between −× V and [V,−] work.

Consider three vector spaces Ra, Rb, and Rc. If VectR were Cartesian closed, then we
would expect that

Mor(Ra × Rb,Rc) ∼= Mor(Ra, [Rb,Rc]) .

Note that Ra × Rb ∼= Ra+b and [Rb,Rc] ∼= Rbc. Swapping Mor(−,−) for [−,−] additionally
tells us that

[Ra+b,Rc] ∼= [Ra,Rbc] .

This cannot hold as an isomorphism in VectR, since [Ra+b,Rc] ∼= R(a+b)c, while [Ra,Rbc] ∼=
Rabc. Therefore, VectR cannot be a Cartesian closed category.

However, there is a kind of “product” on vector spaces that does satisfy this property.
The tensor product V ⊗ W of two vector spaces V and W satisfies the property that
dim(V ⊗W) = dim(V) dim(W), so in particular Ra⊗Rb ∼= Rab. Given bases {v1, . . . , va} of
V and {w1, . . . , wb} of W , we can construct V ⊗W as the free vector space on the basis

{vi ⊗ wj | 1 ≤ i ≤ a, 1 ≤ j ≤ b} .

With this kind of product, we do in fact have an adjunction between −⊗ V and [V,−], i.e.

[U ⊗ V,W] ∼= [U, [V,W]]

for all vector spaces U , V , and W .

59

3.10. MONOIDAL CATEGORIES

3.10.3 Monoidal Categories in general

A monoidal category is a category C equipped with

• a “product” functor ⊗ : C × C → C,

• a “unit” object I of C,

• a natural “associator” isomorphism α : A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C,

• a natural “left unitor” isomorphism λ : I ⊗ A ∼= A, and

• a natural “right unitor” isomorphism ρ : A⊗ I ∼= A.

This structure is required to satisfy the “triangle identity” and “pentagon identity”, which
say that the following diagrams commute for all objects A, B, C, and D.

A⊗ (I ⊗B) (A⊗ I)⊗B

A⊗B

α

I⊗λ
ρ⊗I

(A⊗B)⊗ (C ⊗D)

A⊗ (B ⊗ (C ⊗D)) ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D

α

idA ⊗α

α

α

α⊗idD

Here are some examples of monoidal categories.

• Every category with finite products is a monoidal category, with ⊗ = × and I = 1.

• Every category with finite coproducts is a monoidal category, with ⊗ = ⊔ and I = ∅.

• As we saw on the previous page, the category of real vector spaces is monoidal, with
⊗ = ⊗ and I = R1.

• The category Set∗ of pointed sets is a monoidal category, with ⊗ = ∧ (the smash
product A ∧B = (A×B)/(A ⊔B)) and I = 2.

• Any monoidM can be turned into a monoidal categoryM by letting the objects ofM
be the elements of M , the morphisms ofM be the identities, the monoidal operation
⊗ be the multiplication in M , and the unit be the unit in M .

If a monoidal category C also has exponential objects that are adjoint to the product ⊗,
then we call C a closed monoidal category. These include all Cartesian closed categories,
as well as the examples above of real vector spaces and pointed sets.

60

3.10. MONOIDAL CATEGORIES

3.10.4 Monoids in Monoidal Categories

Given a monoidal category C, we can define what it means for an object in C to be itself a
monoid! A monoid in C is an object M of C equipped with

• a map µ :M ⊗M →M and

• a map η : I →M

satisfying a few laws that say that µ is associative and unital with respect to the associator
α and unitors λ and ρ.

I ⊗M M ⊗M M ⊗ I

M

η⊗idM

λ µ

idM ⊗η

ρ

M ⊗ (M ⊗M) M ⊗M

M

(M ⊗M)⊗M M ⊗M

idM ⊗µ

µ

α

µ⊗idM

µ

Monoids in a category describe what it means to give an object some extra structure
involving multiplication. For example:

• A monoid in Set is just a monoid.

• A monoid in the category Ab of abelian groups is a ring.

• A monoid in VectR is called an associative R-algebra. As an example, the com-
plex numbers C are an R-algebra if we think of them as vectors in R2 with complex
multiplication.

• A monoid in the category Mon of monoids is a commutative monoid.

This last fact follows from a famous proof called the Eckmann-Hilton argument,
which says that if a setM is a monoid in two ways, and these ways are compatible with each
other, then both monoid structures are actually the same commutative monoid. Essentially,
if (M, ◦, 1◦) and (M, ⋆, 1⋆) are both monoids, and these operations are compatible with each
other in the sense that

(a ◦ b) ⋆ (c ◦ d) = (a ⋆ c) ◦ (b ⋆ d) ,

then 1◦ = 1⋆ and ◦ = ⋆ and ◦ = ⋆ is commutative.

61

3.10. MONOIDAL CATEGORIES

The Eckmann-Hilton argument. First, we will prove that the identities are the same.

1⋆ = 1⋆ ⋆ 1⋆

= (1⋆ ◦ 1◦) ⋆ (1◦ ◦ 1⋆)
= (1⋆ ⋆ 1◦) ◦ (1◦ ⋆ 1⋆)
= 1◦ ◦ 1◦
= 1◦

Now, we don’t need to distinguish between 1⋆ and 1◦, so we’ll just call them 1. Next, we
will prove that the operations are the same.

a ⋆ b = (a ◦ 1) ⋆ (1 ◦ b)
= (a ⋆ 1) ◦ (1 ⋆ b)
= a ◦ b

At this point, we will just use ◦ to denote either operation, since they are equal. Finally, we
will prove that the operation is commutative.

a ◦ b = (1 ◦ a) ◦ (b ◦ 1)
= (1 ◦ b) ◦ (a ◦ 1)
= b ◦ a

62

3.11. THE YONEDA EMBEDDING

3.11 The Yoneda embedding

3.11.1 Presheaves

Recall that a functor C → Set is representable if it is naturally isomorphic to one of the form
Mor(X,−) for some X ∈ C. Dually, a functor Cop → Set is representable iff it is naturally
isomorphic to one of the form Mor(−, Y) for some Y ∈ C. Today, we will be interested in
functors with the same signature, representable or not.

How can we think about a functor F : C → Set? What is such an object really telling
us? When C is a poset, one perspective to take is that a functor C → Set is a “filtered set”;
each piece F (p) is the image of some poset element p ∈ C, and if p ≤ q, then F (p) ⊆ F (q).
We can recover the “underlying set” by taking the union of these pieces, i.e.⋃

p∈C

F (p) .

When C is a general category, the “parameterized set” interpretation can still be useful;
we have a set F (X) for each object X, and maps F (X)→ F (Y) for each map X → Y that
tell us how to identify elements of F (X) with F (Y).

If we fix some category C, we can consider the functor category SetC. Recall that the
objects of this category are functors C → Set, and the morphisms are natural transforma-
tions. More explicitly, if F,G : C → Set are two functors, then a natural transformation
θ : F → G is a choice of component function θX : F (X)→ G(X) for each object X of C.

Let’s talk about a couple interesting examples of functor categories of this form. If Γ is
the two-object category

E V

s

t

from the homeworks, then we have already seen that a functor Γ → Set is just a (directed
multi)graph, and therefore the functor category SetΓ is a category of graphs and graph
homomorphisms.

If ∆ is the category of finite ordinals, then Set∆
op

is the category of simplicial sets, which
are objects used in algebraic topology to compute invariants such as homology groups. More
concretely, a finite ordinal is a totally-ordered set [n] = {1 ≤ · · · ≤ n}, so the category ∆
looks like

[0] [1] [2] · · · .

Therefore, the image of a functor ∆op → Set would look like

X0 X1 X2 · · · .

Intuitively, simplicial sets are like shapes that are built out of points, lines, triangles, and
tetrahedra of any dimension. These maps tell us when one shape is the boundary of another,
for example.

63

3.11. THE YONEDA EMBEDDING

3.11.2 The Yoneda embedding in general

Recall that for any locally small category C, we have a set-of-morphisms functor

Mor(−,−) : Cop × C → Set .

It turns out that Cat is itself Cartesian closed, so we can transform the two-input functor
above into a single-input contravariant functor

g : Cop → SetC

which sends an object X in C to the functor Mor(X,−). We can also transform our two-input
functor into a covariant functor

h : C → SetC
op

by fixing the other argument instead, i.e. h(Y) = Mor(−, Y). By convention, this functor
h is the one that we will be focusing on. It is called the Yoneda embedding, as it turns
out that h is full, faithful, and injective on objects (any functor satisfying these properties
is called an embedding). Intuitively, h lets us view C as a subcategory of SetC

op

. This is
rather surprising; it is not immediately obvious that C should be a subcategory of SetD for
any category D, much less the choice D = Cop.

As a specific example, let’s consider the case that C is a group G, which has one object
∗ and a morphism ∗ → ∗ for each g ∈ G. A functor α : G→ Set is a choice of set X and a
function αg : X → X for each g ∈ G; such a structure is called a G-set, or an action of the
group G on the set X. Every group acts on itself via left multiplication, i.e. α : G → Set
sends ∗ to the underlying set of G, and αg(x) = gx. Dually, every group also acts on itself
via right multiplication, as long as we remember to reverse the arrows: α : Gop → Set sends
∗ to the underlying set of G, and αg(x) = xg.

The Yoneda embedding gives us a functor h : G→ SetG
op

, and evaluating this functor on
∗ gives us a functor h(∗) : Gop → Set. We can think of h(∗) as identifying the elements of Gop

with automorphisms of some set, specifically G itself, with Gop acting by right multiplication.
Therefore, h identifies elements of G with automorphisms of h(∗) that commute with right
multiplication, which are exactly the automorphisms induced by left multiplication.

Proof. We want to show that the automorphisms ofG that commute with right multiplication
are exactly the left multiplications. Let f : G→ G commute with right multiplication. Then

f(xg) = f(x)g

for all x, g ∈ G. Then
f(1g) = f(1)g

for all g ∈ G, so f is given by left multiplication by f(1).

This is the essence of Cayley’s theorem, which says that any finite group G is a
subgroup of Sn for n = |G|. More generally, any group G is a subgroup of Aut(X) where X
is the cardinality of the underlying set of G.

64

3.12. THE YONEDA LEMMA

3.12 The Yoneda lemma

Recall that the Yoneda embedding is the functor

Yo : C → SetC
op

for a locally small category C. This functor sends an object Y in C to Mor(−, Y) in SetC
op

.
A consequence of the Yoneda lemma is that this functor is full, faithful, and injective on
objects; we call such a functor an embedding.

3.12.1 Group Actions

Let G be a group, thought of as a one-object category. Recall that a functor α : G → Set
picks out a set X = α(∗) and assigns elements g ∈ G to automorphisms αg : X → X. We
call this algebraic structure a G-set or group action of G on X. A natural transformation
θ between two functors α, β : G → Set is called an equivariant map; it consists of a
single component θ∗ : X → X that commutes with the actions α and β in the sense that
θ∗(αg(x)) = βg(θ∗(x)). When the actions α and β are implicit, we often write this as
θ∗(gx) = gθ∗(x).

While a given group G may act on many different sets X, every group acts on itself by
left multiplication, i.e. X = G and αg(h) = gh. The existence of this action is essentially
the content of Cayley’s theorem.

Theorem 3.12.1 (Cayley’s theorem). Every group is a subgroup of a symmetric group.

It turns out that we can recover this statement from the Yoneda embedding, with C = G.
Specifically, we have a functor

Yo : G→ SetG
op

that sends the object ∗ of G to a functor Yo(∗) : Gop → Set. This functor Yo(∗) sends the
object ∗ of Gop to the underlying set of G, and sends an element g ∈ Gop to the automorphism
of G given by right multiplication, i.e. Yo(∗)(g)(h) = hg. What does Yo do to morphisms
of G? It sends g ∈ G to a natural transformation Yo(g) : Yo(∗) → Yo(∗), which is an
equivariant map G → G commuting with right multiplication. It turns out that all such
maps must come from left multiplication by some element of g.

Proof. We want to show that the automorphisms ofG that commute with right multiplication
are exactly the left multiplications. Let f : G→ G commute with right multiplication. Then

f(xg) = f(x)g

for all x, g ∈ G. Then
f(1g) = f(1)g

for all g ∈ G, so f is given by left multiplication by f(1).

Therefore, the Yoneda embedding identifies elements of G with automorphisms of G. Ad-
ditionally, it states that these automorphisms commute with right multiplication by elements
of G, which adds slightly more structure to our original statement of Cayley’s theorem.

65

3.12. THE YONEDA LEMMA

3.12.2 Posets

What does the Yoneda embedding say about when our category C is a poset P? In this case,
we have a functor

Yo : P → SetP
op

that sends p ∈ P to a functor Yo(p) : Pop → Set, which we can think of as a filtered set. The
Yoneda embedding also sends a relation p→ q to a natural transformation θ : Yo(p)→ Yo(q),
which is a filtered map between these filtered sets. Note that P may not have originally
been defined as a poset of sets and inclusions! Intuitively, we can think about the Yoneda
embedding as telling us that every poset is isomorphic to one that consists of sets and
inclusions; in this way, it generalizes Cayley’s theorem to a wide range of other types of
categories.

3.12.3 The Yoneda lemma in general

The Yoneda lemma says that for any locally small category C, functor F : C → Setop, and
object X of C, there is an isomorphism

Nat(Mor(−, X), F) ∼= F (X) .

Here, Nat(−,−) is the set of natural transformations between the two functors; basically the
set Mor(−,−) in the category of categories Cat. Using this notation as well as the Yoneda
embedding, we can rewrite this as

MorCat(Yo(X), F) ∼= F (X) .

A first consequence of the Yoneda lemma comes by setting F = Yo(Y) for some other
object Y of C. This tells us that

MorCat(Yo(X),Yo(Y)) ∼= Mor(X, Y)

which implies that the Yoneda embedding is full and faithful. This also implies that not
only is the Yoneda embedding injective on objects, but it is even injective on objects up to
isomorphism. If Yo(X) ∼= Yo(Y), then this isomorphism is in the image of some invertible
f : X → Y in C.

As another consequence of the Yoneda lemma, we obtain an interesting way to prove
isomorphisms. For example, if we want to prove that X × (Y ⊔ Z) ∼= (X × Y) ⊔ (X × Z),
we can look at maps from these objects to any generic object A using the (contravariant)
Yoneda embedding Cop → SetC.

Mor(X × (Y ⊔ Z), A) = Mor(Y ⊔ Z,AX)
= Mor(Y,AX)×Mor(Z,AX)

= Mor(X × Y,A)×Mor(X × Z,A)
= Mor((X × Y) ⊔ (X × Z), A)

The general idea of this kind of calculation is to “enlarge” the category C to a bigger one
SetC

op

that has nicer properties, do math in that category, then bring our results back to C.
It is a bit like using complex numbers to solve a real-valued problem.

66

	Categories
	Categories in general
	Motivation: linear algebra
	Categories in general

	Examples of categories
	Functors
	Review
	Functors
	Posets

	Constructions
	Opposite Day
	Products and Disjoint Unions
	Slices and Coslices

	Isos, Monos, and Epis
	Isomorphisms
	Monos and Epis

	Limits
	Universal properties
	Initial, Terminals, and Zeroes
	Intro to Universal Properties

	Products
	Intro to Universal Properties
	Products in general

	Coproducts
	Duality
	Coproducts
	Lattices
	A First Look at Monoidal Categories

	Elements
	Subobjects
	Products and Disjoint Unions
	Slices and Coslices
	Subcategories
	Subobjects in general

	Pullbacks
	Motivation: Databases
	Pullbacks in general
	Posets
	Sets

	Limits
	Diagrams and Cones
	Limits in general
	Example: Power Series
	Limits in Set

	Colimits
	Pushouts
	Colimits in general
	Example: Infinite Sequences
	Colimits
	Limits
	Another Example

	Functors
	Categories, again
	Limits and Colimits in Set
	Small and Large Categories

	Representable Functors
	Limit Preservation

	Natural transformations
	Natural transformations in general
	Example: `3́9`42`"̇613A``45`47`"603AidSet `3́9`42`"̇613A``45`47`"603AMor({*},-)
	Example: `3́9`42`"̇613A``45`47`"603AidSet P(-)
	Example: `3́9`42`"̇613A``45`47`"603AMor(-,{0,1}) P(-)
	Example: X Y Y X

	Natural isomorphisms
	Properties of natural transformations
	Limit preservation

	Equivalence of categories
	Example: Partial functions

	Equivalence, continued
	Skeletons
	Preorders
	Groupoids

	Adjoints
	Free Vector Spaces
	Currying
	Free-forgetful Adjunctions
	Limit Preservation

	Cartesian closed categories
	Adjoints

	Cartesian closed categories in general
	Propositions
	Posets
	Closed categories

	Monoidal categories
	Review
	Vector Spaces
	Monoidal Categories in general
	Monoids in Monoidal Categories

	The Yoneda embedding
	Presheaves
	The Yoneda embedding in general

	The Yoneda lemma
	Group Actions
	Posets
	The Yoneda lemma in general

